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FOREWORD 

T h e  work reported in  t h i s  F i n a l  Report  c o v e r s  the per iod  Oc tobe r  15, 1963 to November 30, 
1964. We would l i k e  to acknowledge  t h e  he lpfu l  d i s c u s s i o n s  a n d  g u i d a n c e  of Mr. Milton Schach  
and Dr. P a u l  F a n g  (Pro jec t  Monitor) of NASA Goddard S p a c e  F l igh t  C e n t e r  during t h e  c o u r s e  of 

t h i s  work. 

T h e  work reported herein h a s  ranged from t h e  b a s i c  r e sea rch  o n  radiation-induced d e f e c t s  
in  s i l i con  to t h e  behavior of s o l a r  c e l l s  i n  proton and e lec t ron  environments.  I t  i s  f e l t  t ha t  t h e  
approach w e  h a v e  taken i n  t h i s  work will cont r ibu te  s ign i f icant ly  to t h e  understanding and  cont ro l  
of rad ia t ion  damage  ef fec ts  i n  so l a r  ce l l s .  T h e  e lec t ron  s p i n  r e s o n a n c e  work h a s  r eached  t h e  
point where i t  is beginning to pay off in  t e rms  of t h e  cor re la t ion  of e l ec t ron  paramagnet ic  r e sonance  
proper t ies  with e lec t r ica l  p roper t ies  of s i l i con ,  e spec ia l ly  the  res i s t iv i ty .  T h i s  shou ld  h e l p  i n  de- 
veloping a phys ica l  model of t h e  damage  center.  

T h e  interaction of l i thium with radiation-induced d e f e c t s  h a s  proven to b e  qu i t e  in te res t ing .  
Lithium i s  t h e  f i r s t  metall ic impurity with which we cou ld  affect damage  proper t ies  i n  s i l i con .  
Fu r the r  work i n  t h i s  a r ea  should prove excit ing.  

? 
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Elec t ron  paramagnet ic  r e sonance  (EPR) s t u d i e s  h a v e  been made of t h e  dominant paramag- 
n e t i c  defect produced in  p-type s i l icon  when bombarded by e l ec t rons  at e n e r g i e s  from 1 MeV to 

6.6 MeV. T h e  pr incipal  a x e s  of t h i s  de fec t  a r e  a long  t h e  <221>, <lie>, and  <11T> direct ions.  T h e  
g -va lues  a long  t h e s e  d i rec t ions  are 2.0000, 2.0066, and 2.0056, respect ively.  T h e  introduct ion 
rates  have been measured to b e  0.03 c m - l  and 0.15 cm-l at 1 MeV and 6.6 MeV, respect ively.  T h e  
e l e c t r o n i c  l e v e l  corresponding to t h i s  defec t  i s  be tween the  va l ence  band  edge a n d  0.3 e V  a b o v e  
it. T h e  symmetry a x i s ,  <221>, s u g g e s t s  that  t h e  defect invo lves  a subs t i tu t iona l  oxygen  atom i n  
a s s o c i a t i o n  with a next-nearest  neighbor  s i l i con  inters t i t ia l .  EPR measurements  a r e  being corre- 
lated with the  e l e c t r i c a l  p roper t ies  of s i l icon  for  t h e  f i r s t  time. 

Diffusion length  measurements  have  been  u s e d  to s tudy  t h e  effects of impur i t ies  on  radia- 
t ion d a m a g e  in  s i l i c o n  produced by e lec t ron  bombardment. Aluminum, boron, gallium, indium, and 
gadol inium produce equal radiation damage resistance when they a r e  used  i n  s o l a r  cells with a b a s e  
r e s i s t i v i t y  of 1 to 10 SZ-cm. T h e  radiat ion r e s i s t anceof  l i thium n-on-p c e l l s  is  g r e a t e r  t han  tha t  
of phosphorus  n-on-p cells al though t h e  deepe r  junc t ions  of t h e  l i thium cells bec loud  t h i s  r e s u l t  
somewhat.  T h e  diffusion.of  lithium throughout n-type s i l i c o n  r educes  its res i s t iv i ty ,  y e t  t h e  
radiat ion d a m a g e  r e s i s t ance  of su r face  barrier cells made  from t h i s  mater ia l  i s  typ ica l  of t h e  pre- 
d i f fused  material. Of all t h e  impur i t ies  s tud ied  to date, on ly  l i thium h a s  b e e n  found to g i v e  new 
a n d  promising resu l t s .  

T h e  in te rac t ion  between lithium and radiat ion-induced d e f e c t s  i n  s i l i c o n  h a s  been  measured  
through t h e  u s e  of e lec t ron  paramagnet ic  resonance.  S imul taneous  measurements  of both t h e  l i thium 
resonance  a n d  t h e  damage  r e sonance  h a v e  been  made  as  func t ions  of t h e  l i thium con ten t  and  t h e  
bombarding e lec t ron  flux at 6 MeV. It h a s  been found t h a t  a n  i n c r e a s e  i n  o n e  invar iab ly  p roduces  a 

concomi tan t  d e c r e a s e  i n  t h e  other.  If lithium is in t roduced  at 3OO0C, i ts  r e s o n a n c e  is comple te ly  
removed b y  a n  e lec t ron  f lux of 2 x 

r emoves  any  d a m a g e  r e sonance  with f l u x e s  up  to 2 x 1017 el/cm2. Whether t h e  in te rac t ion  i n v o l v e s  
t h e  complexing  of lithium with a damage  cen te r  or merely t h e  supply ing  of a donor  e lec t ron  from 
l i thium to t h e  damage  cen te r  i s  n o t  c lear .  For a c la r i f ica t ion  of t h i s  point,  e lec t ron  bombardFen t s  
at much  lower  energ ies ,  about  1 MeV, a r e  required. 

el/cm2, while  l i thium introduced at 35OoC comple te ly  

iiz 
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1. ELECTRON PARAMAGNETIC RESONANCE STUDIES 

A. INTRODUCTION 

Elec t ron  paramagnet ic  resonance  (EPR) h a s  been  u s e d  ex tens ive ly  in the  p a s t  i n  the  
s tudy  of e lec t r ica l ly  ac t ive  chemica l  impurities in semiconductors .  I t  h a s  been par t icu lar ly  use -  
ful  in d iscern ing  the  na ture  of the  local environment of the  paramagnet ic  center ,  t he  pos i t ion  
occupied  in the lattice, the  identification of t h e  charge  state, the  in t e rac t ions  with o ther  chemica l  
e n t i t i e s  p re sen t  in semiconductors ,  and  in the s t ruc tu re  of donor  states. 

T h e  f i rs t  s t u d i e s  of radiation damage c e n t e r s  were car r ied  out  by Bemski '  and  Watkins 
et a l . 2  in electron-irradiated n-type s i l icon .  T h e  dominant  c e n t e r  which a p p e a r s  in pul led n- type 
s i l i con ,  the  A-center ,  w a s  thoroughly s tudied  by Watkins and  C ~ r b e t t . ~  They  showed  tha t  the 
defect w a s  connec ted  with oxygen impurities p re sen t  in the  c rys t a l .  According to the i r  model, 
a n  in t e r s t i t i a l  oxygen atom combines with a vacancy  c rea t ed  by e lec t ron  irradiation to produce 
a subs t i t u t iona l  oxygen. T h i s  defect produces a ne t  accep to r  l e v e l  0.17 e V  below t h e  conduct ion 
band. In order for t he  sp in  resonance  of this c e n t e r  to b e  observable ,  the  temperature  must  be 
suf f ic ien t ly  low s o  tha t  e l ec t rons  from the  donor atom c a n  drop down to the  de fec t  l eve l .  

T h e  in i t i a l  work of Watkins and  Corbett demonst ra ted  the  importance of impurit ies in the  
formation of damage cen te r s  which a re  stable at room temperature. They  found tha t  for f loating- 
zone  s i l i c o n ,  which conta ins  less oxygen than pul led s i l i c o n  (" lo i6  
respec t ive ly) ,  the  A-center  d id  not appear .  A new c e n t e r  which they  c a l l e d  the s i l i c o n  E-center  
is c rea t ed  and  is ident i f ied  as a r i s ing  from a donor  a tom-vacancy combinat ion.  They  also iden- 
tified a third defec t  which d o e s  not depend on impurit ies p re sen t  in the c rys t a l .  T h i s  is the  
d ivacancy  (Si C- and  Si J-center),  a s t a b l e  combinat ion of two  vacanc ie s .  T h e  s i l i c o n  J - cen te r  
and  s i l i c o n  C-center  a r e  cons idered  to be the same de fec t  c e n t e r  with different charge  states, 

the  former being de tec t ed  in p-type s i l i con .  At room temperature ,  the  dens i ty  of t h e s e  defects 
is only 5% of the  s i l i con  A-center  de fec t s  in pul led  n- type s i l i con .  

and  10l8 

Recent ly ,  Watkins5 ident i f ied  a variety of damage  c e n t e r s  and  inves t iga t ed  the  k i n e t i c s  
and  na tu reo f  the motions of de fec t s .  Most of t h i s  work w a s  accompl ished  at low temperatures  in  
which the k ine t i c s  were  fol lowed through the c h a n g e s  in  EPR s p e c t r a  a t tending  c h a n g e s  in tem- 
pera  ture. 

Our i n t e re s t  in s p i n  r e sonance  experiments  of damage  c e n t e r s  h a s  been primarily to com- 
plement  t h e  measurements  of the  macroscopic  proper t ies  of i r rad ia ted  s i l i con .  Much tha t  h a s  been  
learned  about  damage d e f e c t s  h a s  been  obtained from s u c h  measurements  as re s i s t i v i ty ,  minority 
car r ie r  lifetime, and  op t i ca l  absorption. The combinat ion of e lec t ron  s p i n  resonance  with t h e s e  
experimental  methods is the approach considered here to provide information concern ing  the  char- 
ac te r iza t ion  'and phys ica l  na ture  of radiation damage  cen te r s .  For th i s  reason ,  w e  h a v e  focused  

1 
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our a t ten t ion  on the  dominant paramagnetic de fec t  cen te r  produced i n  low-res i s t iv i ty  (- 2 Q-cm) 
p-type s i l i con  which h a s  been  i r radiated at roam temperature.  

6. APPARATUS 

T h e  na ture  of EPR resonance  of radiation-produced d e f e c t s  requi res  t he  u s e  of a high- 
sens i t i v i ty  spec t rometer .  To observe  the  s i l i con  A-center,  e l e c t r o n s  mus t  be s u p p l i e d  by t h e  
donor a toms .  T h u s ,  the maximum obse rvab le  number of A-centers  is e q u a l  to t h e  number of donor  
atoms. For 1-Q-cm s i l icon  th i s  is N, = 5 x 1 0 l 5 / c m 3 .  T h e  amount  of s i l i con  mater ia l  u s e d  is 
limited by reasonable radiat ion t imes  and  the  perturbation of t h e  s i l i c o n  on the  microwave cav i ty  
A typ ica l  volume used in  t h i s  work is 0.1 cm3.  The re fo re ,  the  number of defect c e n t e r s  is 
5 x 1o14. 

T h e  sens i t iv i ty  of EPR spec t rometers  is usua l ly  s p e c i f i e d  as the  minimum d e t e c t a b l e  
number of s p i n s  observable at  room temperature us ing  t h e  maximum or mos t  favorabIe microwave  
power. Under t h e s e  condi t ions  ou r  spec t rometer  u s i n g  homodyne operation and  a magnet ic  f ie ld  
modulation frequency of 400 c p s  h a s  a sens i t i v i ty  s u c h  tha t  

N . = 2 x 10” AH rn i n  

where N m i n  = minimum d e t e c t a b l e  number of s p i n s  for  a SNR = 1, a n d  a f i l t e r  t ime c o n s t a n t  
of 3 s e c o n d s .  

AH = linewidth i n  g a u s s .  

T h e  va lue  in  E q .  (1) w a s  determined by measur ing  the  s igna l - to-noise  ra t io  of the  r e sonance  
from a s m a l l  ruby crys ta l  with a known Cr concent ra t ion .  

When the  spectrometer is u s e d  to s tudy  rad ia t ion  damage  d e f e c t s  the sens i t i v i ty  is re- 
duced  in s e v e r a l  ways.  In genera l ,  lower  power l e v e l s  mus t  be u s e d  b e c a u s e  of sa tu ra t ion  effects. 

Furthermore,  t h e  magnitude of t h e  suscep t ib i l i t y  s i g n a l  d e p e n d s  on ex terna l  exper imenta l  para- 
meters ,  s u c h  as  magnitude and frequency of magnet ic  f i e ld  modulation a n d  r a t e  of magnet ic  f ie ld  
s w e e p ,  a n d  i t  is not a l w a y s  poss ib l e  to ope ra t e  under  cond i t ions  where  the  suscep t ib i l i t y  s i g n a l  
is maximum. 

To increase  the s e n s i t i v i t y ,  a superhe terodyne  s y s t e m  had  been  added  to the  spec t romete r ,  
thus  a l lowing  operation at low power l e v e l s  whi le  still  maintaining good sens i t i v i ty .  T h i s  also 

reduced  t h e  c rys t a l  n o i s e  reaching  the  de tec t ion  amplif ier .  However,  the  sens i t i v i ty  obta inable  
in  p rac t i ce  u s i n g  the superhe terodyne  s y s t e m  usua l ly  falls below i t s  theore t ica l  va lue .  T h e  
problem s e e m s  to  be n o i s e  due to v ibra t ions  in  the  sys t em.  

In studying t h e  symmetry proper t ies  of the  paramagnet ic  damage  cen te r ,  t he  microwave 
bridge w a s  arranged as shown  in  F i g .  1. T h i s  a r rangement  a l l o w s  for the power in  the  re ference  

2 
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Fig. 1. K-band microwave bridge. 

cavi ty  and  sample  cav i ty  to be ba lanced .  When t h e  ba l ance  is d is turbed  by moving the  s a m p l e  
through r e sonance  a s i g n a l  appea r s  in the  fourth arm of the  bridge. T h e  s igna l  is mixed with 
that of the  l o c a l  o sc i l l a to r  and  picked u p  by the  c r y s t a l  de tec tor .  T h i s  sys t em is suf f ic ien t ly  
f lex ib le  so  tha t  t h e n o i s e  accru ing  from the klystron and  c r y s t a l  de t ec to r  c a n  be  kep t  to low l e v e l s ,  
e spec ia l ly  t h e n o i s e  genera ted  by the  klystron at the  h igher  power l e v e l s .  In th i s  s e t u p ,  the  klys- 
tron frequency i s l o c k e d  to the  resonant  frequency of the  sample  cav i ty ,  and  the  des i r ed  mode is 

s e l e c t e d  by ad jus t ing  the  p h a s e  of the s igna l  re f lec ted  from the  sample  cav i ty  with r e spec t  to 

the p h a s e  of the b i a s  s i g n a l  with a phase-shifter.  But  because  thepower  is fed equal ly  in to  both 
c a v i t i e s ,  changing  the p h a s e  a l s o  c h a n g e s  the coupl ing  of t he  c a v i t i e s  to the bridge, thus  re- 
quiring further ad jus tments  in the  other arms. T h i s  in te rac t ion  r e s u l t s  in a condi t ion where the  
klystron may now be  locked  to t h e  resonant  frequency of e i the r  cav i ty ,  making i t  difficult  to 
select exac t ly ,  i f  one  so des i r ed ,  a particular mode of opera t ion  of the  bridge. In t he  measurement  
of the angular  variation of the  damage  defect,  th i s  is of no  g rea t  consequence .  Cons ide ra t ions  
of s ens i t i v i ty ,  however ,  a r e  of grea te r  concern. 

On the  o ther  hand,  in determining absolu te  s p i n  d e n s i t i e s  it is imperat ive to have  t h e  
spec t rometer  operat ing in the  d ispers ion  mode only.  Experimental ly  and  theore t ica l ly ,  it h a s  been  
found tha t  paramagnet ic  damage cen te r s  “saturate” more readi ly  in  the absorpt ion mode.6 A s  a 

consequence ,  the  in tens i ty  of the  resonance  s i g n a l  c a n  vary apprec iab ly  in going from absorp t ion  
modes to d ispers ion  modes.  One obta ins  maximum s i g n a l  in the d ispers ion  mode. Obvious ly ,  then, 
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the measurement  of spin d e n s i t i e s  by comparison of  the  d e f e c t  spec t rum to a s t a n d a r d  r e s o n a n c e  
s i g n a l  requires  that  the br idge be opera ted  s t r i c t l y  in  the d i s p e r s i o n  mode. To do t h i s  e a s i l y  the 
phase-sh i f te r  w a s  taken from the reference arm of the  br idge as shown in F i g .  1, a n d  p l a c e d  in 
the sample  arm together with a precis ion a t tenuator .  T h i s  rearrangement  accompl ished  two things.  
F i r s t ,  the  power going in to  the  s a m p l e  cavi ty  w a s  d e c r e a s e d  by 10 d b  with r e s p e c t  to the re ference  
cavi ty  thereby permitting the  unequivocal  f ixing of t h e  klystron to t h e  l a t t e r  resonant  f requency.  
T h i s ,  in e s s e n c e ,  a l so  i s o l a t e d  the  s a m p l e  arm from the  r e s t  of the  br idge.  Secondly,  the  p h a s e  
of the ref lected s igna l  c a n  b e  a d j u s t e d  s imply  to the d e s i r e d  mode by u s i n g  only the phase-sh i f te r .  
T h e  ease with which o n e  c a n  select the  d ispers ion  mode, however ,  w a s  pa id  for at  the  pr ice  of 

a reduction in  sens i t iv i ty  by a factor  of about  two. 

C. SPECIAL PROBLEMS IN STUDYING DAMAGE CENTERS 

In trying to obtain t h e  a b s o l u t e  d e n s i t y  of d e f e c t s  from s p i n  resonance  measurements  
c a r e  must  be taken to avoid  errors  a r i s i n g  from sa tura t ion  of t h e s e  l i n e s .  Saturat ion effects o c c u r  
when the spin- la t t ice  in te rac t ion  is very weak and  the  re laxa t ion  t imes  a r e  therefore  very long  
(of the order  of seconds) .  T h e  long sp in- la t t ice  re laxat ion t i m e  d o e s  not  a l low the e l e c t r o n s  
exc i ted  to the  higher energy  state to lose energy fast enough a n d  drop back in to  the  lower energy  
state. A s  a resu l t ,  the populat ion of t h e s e  l e v e l s  becomes  equal ,  prevent ing the  further absorp t ion  
of radiation. Experimental ly ,  t h i s  condi t ion is observed  by a n  apparent  d e c r e a s e  in  the re la t ive  
size of t h e  resonance  s i g n a l  a n d  u s u a l l y  a t tended  by a n  i n c r e a s e  in  l inewidth.  

T h e  details of the sa tura t ion  behavior  of a s y s t e m  depend markedly on the na ture  of the 
l ine-broadening mechanism. 6 t 7  If broadening a r i s e s  from dipolar  in te rac t ion  be tween l ike  s p i n s  
or from interact ion with the  radiat ion f ie ld ,  then the  thermal equi l ibr ium of the  s p i n  s y s t e m  wil l  
be preserved during resonance  absorp t ion .  T h i s  wi l l  also be true if the  l inewidth comes  from 
some mechanism which is ex terna l  to  t h e  s p i n  s y s t e m  but  is f luctuat ing rapidly compared with 
the t i m e  associated with a s p i n  t ransi t ion.  T h i s  case is known as t h e  homogeneously broadened 
case. T h e  consequence  of homogeneous broadening is tha t  the  energy  absorbed  from the  micro- 
wave  f ie ld  is dis t r ibuted to all the s p i n s ,  and thermal equilibrium of the  s p i n  s y s t e m  is maintained 
through resonance .  

In the other c a s e ,  known as the  inhomogeneously broadened case, energy is transferred 
only to t h o s e  s p i n s  w h o s e  local f ie lds  s a t i s f y  the  r e s o n a n c e  condi t ion.  Fur ther ,  the  p r o c e s s e s  
for spin-spin interaction wi l l  be s low as compared with the d i rec t  in te rac t ions  with the lattice 

s i n c e ,  for s p i n s  in different local f i e l d s  to come to equilibrium, energy wi l l  have  to be t rans-  
ferred to the la t t ice .  T h e  overa l l  r e s p o n s e  of the  s p i n  s y s t e m  wi l l  therefore b e  a superpos i t ion  
of the individual  responses  of t h e  s p i n  p a c k e t s .  

I t  is th i s  la t ter  case with which w e  a r e  concerned  here .  T h e  r e s o n a n c e  s i g n a l  of inhomo- 
geneous ly  broadened l i n e s  is s u s c e p t i b l e  to c h a n g e s  i n  magnitude and s h a p e  depending  on 

4 



exper imenta l  condi t ions  o ther  than microwave power. In par t icu lar ,  it h a s  been found to b e  de- 
pendent  upon how rapidly the  condi t ions  of exc i ta t ion  change  as  compared to the  re laxa t ion  time 
of the  sp in  sys t em.  T h e s e  effects, known as p a s s a g e  effects, a r e  pecul ia r  to  inhomogeneously 
broadened l i n e s  and  have  been  inves t iga ted  by Por t i s6  a n d  Weger.7 Genera l ly ,  p a s s a g e  effects 

depend in a complex manner on microwave f i e ld ,  magnet ic  f ie ld  s w e e p  r a t e ,  modulation f ie ld ,  
modulation frequency,  a n d  t h e  relaxation t ime of the  sys t em.  Weger, in fact, h a s  ana lyzed  and  
confirmed experimental ly  t h e  de t a i l s  of resonance  l i n e s  expec ted  for the  l imiting cases under  
e l even  different p a s s a g e  condi t ions .  An understanding of a part  of t h i s  problem can  be  s e e n  in  
F ig .  2 i n  which t h e  in tens i ty  of t h e  d ispers ion  r e sonance  is plotted against  s w e e p  field, micro- 
wave  f ie ld ,  and  modulation f ie ld .  I t  is clear from t h i s  f igure tha t  if one  is in t e re s t ed  in  making 
abso lu te  measurements  of s p i n  concentrat ions from inhomogeneously broadened r e sonances  o n e  
must  know where  on e a c h  of t h e  three curves in  F i g .  2 h e  is performing the  s p i n  r e sonance  
measurement .  

0.01 0.1 I IO 
H, IN GAUSS 

Fig.  2. Dependence of amplitude of dispersion signal (x’) upon 

(a) r-f magnetic field, HI, (b) sweep field rate - 
( c )  modulation amplitude Hm - according to Weger. 

dHo 
dt 

and 

We have  taken t h e  time to emphasize some of the  d i f f icu l t ies  encountered  with inhomo- 
geneous ly  broadened l i n e s  b e c a u s e  the paramagnet ic  d e f e c t  cen ter ,  the  K-center ,  belongs to th i s  
group of sa tu ra t ed  resonances .  T h e  evidence for s o  c l a s s i f y i n g  the  K-center  comes  from t h e  fact 

tha t  t he  resonance  d o e s  not change  s h a p e  upon sa tu ra t ion  nor d o  the observed  l i n e  s h a p e  and  
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l inewidth.  T h i s  type of resonance  behavior  is c h a r a c t e r i s t i c  of the other  paramagnet ic  damage  
c e n t e r s  observed  i n  s i l i con . '  

D. CALIBRATION OF STANDARD SAMPLE 

T h e  determination of the  a b s o l u t e  in tens i ty  of a n  e lec t ron  resonance  s i g n a l  c a n ,  in prin- 
c i p l e ,  be affected by the u s e  of the theore t ica l  e x p r e s s i o n s  for  t h e  c h a n g e  in detected power of 
the spectrometer .  Such an a b s o l u t e  determination of  s p i n  d e n s i t i e s ,  however ,  is se ldom made in 
prac t ice ,  and a comparison method employing a s t a n d a r d  s a m p l e  is genera l ly  adopted.  For t h e  
b e s t  resu l t  the s tandard comparison s a m p l e  should  h a v e  a l inewidth and  in tens i ty  of the  same 

order as t h o s e  of the s p e c t r a l  l i n e s  to b e  measured.  

In determining the a b s o l u t e  s p i n  d e n s i t y  of the K-center ,  the  s i l i c o n  conduct ion  e lec t ron  
resonance  l ine  h a s  been  u s e d  to provide the  reference s i g n a l .  T h e  l a t t e r  spec t rum is a s i m p l e ,  
isotropic  one-l ine resonance so  tha t  one  n e e d  not  be concerned  with a l ign ing  the s a m p l e  a l o n g  
a s p e c i f i c  direction in t h e s e  measurements .  T h e  t rans i t ion  for the  conduct ion e lec t ron  o c c u r s  
between + 1 / 2  and  - 1 / 2  s p i n  states as i t  does for t h e  K-center ,  thus  el iminat ing cor rec t ions  in 
t ransi t ion probabi l i t ies  between the two r e s o n a n c e s .  Both the l inewidths  a n d  i n t e n s i t i e s  of the 
two r e s o n a n c e s  are comparable ,  obviat ing in  most  i n s t a n c e s  changing  g a i n s  and f ie ld  modulat ion 
ampli tudes in going from o n e  s p e c t r a  to  t h e  other .  One  of the  more important fea tures  of the  con-  
duction e lec t ron  resonance is t h a t  i t  is wel l  s e p a r a t e d  i n  magnet ic  f ie ld  from the K-center  reso-  
nance  al lowing both to be viewed a t  t h e  s a m e  time. An addi t iona l  advantage  is obta ined  s i n c e  
in t h i s  case t h e  fi l l ing factor  of the cavi ty  requires  n o  correct ion.  

T h e  a c t u a l  s p i n  dens i ty  of t h e  conduct ion e lec t ron  s a m p l e  w a s  ca l ibra ted  in  two w a y s .  
One method employed the  measurement  of the  H a l l  c o n s t a n t  and  res i s t iv i ty .  Here  a s i l i c o n  slice 
a d j a c e n t  to t h e  sample used in the  e lec t ron  r e s o n a n c e  measurements  w a s  made in to  a H a l l  s a m p l e  
and  measured at room temperature  a n d  at neon temperatures .  S ince  the mater ia l  is degenera te ,  
one e x p e c t s  the  carrier concentrat ion to b e  the same at both temperatures .  T h i s  is the  case s i n c e  
the r e s u l t s  yielded a free car r ie r  concentrat ion of 2.6 x 1018/cm3 and  a res i s t iv i ty ,  p = 0.042 a - c m ,  
and  2.6 x 10"/cm3 a n d  p = 0.027 Q-cm at 27°K and 300"K, respec t ive ly .  Here ,  of course ,  i t  is 
assumed that  the free car r ie r  concentrat ion is e q u a l  to t h e  s p i n  dens i ty .  

T h e  o ther  way in which t h e  s t a n d a r d  s a m p l e  w a s  ca l ibra ted  w a s  by s p i n  resonance .  T h e  
resonance  s i g n a l  of t h e  s t a n d a r d  is compared to the  resonance  s i g n a l  of a known concent ra t ion  
of phosphorus donors ( 3  x 1016/cm3); see F i g .  3. T h e  l inewidths  of both a r e  known and  the a r e a s  
measured.  T a k i n g  into account  the s k i n  depth of the  microwave magnet ic  field w e  obta in  to within 
15% the same s p i n  dens i ty  as tha t  c a l c u l a t e d  from the  H a l l  measurements .  
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Fig.  3. Comparison of conduction electron resonance with phosphorus doublet 
lines at  the same gains. Total  number of spins of phosphorus-doped 
sample = 1 x 1014. 

T h e  s k i n  depth  f ac to r  u sed  in the sp in  dens i ty  ca l ibra t ion  of the  s tandard  sample  comes  
about  because  of the fairly low res i s t iv i ty  of t he  sample  (0.042 a-cm) .  A s  a resu l t  of the  low 
res i s t iv i ty ,  the  penetration of the  r-f magnetic f ie ld  is confined to a small depth of the  sample ,  
6, which is given by 

6 =  T I 2  c m  
120n2p 

For our sample  

p = 0.042 Q-cm 

p = 1  

X = 1.4 cm-' 

from which we obta in  6 = 2.2 mi ls .  S ince  themagnet ic  f ie ld  pene t r a t e s  both s i d e s  of the  s t anda rd  
sample  the overa l l  s k i n  depth  is 4.4 m i l s .  The  a c t u a l  t h i ckness  of the s a m p l e  is 13.5 m i l s .  T h u s ,  
in the  final ca l cu la t ions  a factor of 4.4/13.5 m u s t  be app l i ed  to the  K-center  dens i ty  s i n c e  only  
that amount  of t h e  conduct ion e lec t ron  spins is be ing  measured.  
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E. EXPERIMENTAL PROCEDURES AND RESULTS 

1. Experimental Procedure 

All  the samples  s t u d i e d  were P-type, doped with boron or  gal l ium to a res i s t iv i ty  of 2 a - c m .  
Both "pulled" and  float-zone s i l i c o n  c r y s t a l s  were u s e d  in t h e s e  exper iments .  T h e  s a m p l e s  were 
0.025 in.  thick by 0.3 x 0.1 in .  and i r radiated on o n e  s i d e  only s i n c e  the range of the  e l e c t r o n s  is 
much larger  than the  sample t h i c k n e s s .  T h e  1-MeV i r rad ia t ions  were performed o n  the Van d e  Graaff 
acce lera tor  at RCA Laborator ies  at a beam current  of 5 pA/cm2,  a n d  the  6.6 MeV run w a s  made with 
Eth icon ' s  high-voltage l inear  acce lera tor .  T h e  beam current  w a s  maintained at 10 pA/cm2.  A 
Faraday cup  w a s  used to monitor the  current  and  total charge  throughout the  i r rad ia t ions .  T h e  
samples  were kept  cool by mounting them on water-cooled b locks .  T h e  temperature  w a s  recorded 
during the bombardment with a thermocouple.  A 25°C r i se  w a s  obta ined  for the  lower energy  bom- 
bardment and 50°C for the 6.6-MeV irradiat ion.  

T h e  s p i n  resonance measurements were performed at  l iquid neon  temperatures  with a s p e c -  
trometer operat ing at a frequency of 21.5 G c / s e c .  T h e  arrangement  of themicrowave  bridge is 
shown in F i g .  1. In the measurements  u s e d  for the K-center  d e n s i t y  c a l c u l a t i o n s ,  a re ference  
sample  (descr ibed  i n  Sect ion I-D) conta in ing  8.5 x lo1 s p i n s  w a s  p laced  in  the  cavi ty  a l o n g  
with the i r radiated s i l icon bars .  T h e  s p i n  resonance  d a t a  were taken only in  the  d ispers ion  mode 
at a modulation frequency of 80 c p s  a n d  a modulation f ie ld  of 0.32 G.  

2. Results 

T h e  dominant e lec t ron  s p i n  resonance  spec t rum (K-center spec t rum)  obta ined  in e lectron-  
i r radiated p-type s i l icon c o n s i s t s  of s e v e n  c l o s e l y  s p a c e d  l i n e s .  T h e  spectrum is shown in F i g .  4 

L 1 

-INCREASING H 

Fig.  4. The K-center resonance spectrum taken with the magnetic field rotated 80", 
83" and 87" from the <loo> direction, in the (110) plane. 
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where the  l i ne  on the  extreme left is tha t  of t he  s i l i con  conduct ion e lec t ron  resonance .  T h e  K- 
cen te r  l inewidth is about  2.5 g a u s s  as  compared with a width of one  g a u s s  for t he  conduct ion  
e lec t ron  l ine.  

T h e  angular  variation of t h e  seven- l ine  spec t rum h a s  been fully inves t iga t ed  and  the  
d e t a i l s  have  been d i s c u s s e d  in an  ea r l i e r  report. F o r  comple t eness ,  however ,  we  w i l l  i nc lude  
the per t inent  r e su l t s  here.  T h e  a n a l y s i s  of the  d a t a  on the  angular  variation of the  s p e c t r a l  l i n e s  
with magnet ic  f ie ld  (see F i g .  5) is we l l  f i t ted by a d e f e c t  whose  three pr inc ipa l  magnet ic  a x e s  
a re  a long  the  <221>, < l i O > ,  and  <ll& directions.  T h e  corresponding g-va lues  a r e  2.0000, 2.0066, 

and  2.0056. T h e  direction of the  <221> axis is in the  l i ne  from a l a t t i c e  site to a nex t  n e a r e s t  
i n t e r s t i t i a l  posit ion.  
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Fig.  5. Angular variation of the K-center resonance l i n e s  with magnetic f ie ld.  
H is confined to rotate in the (110) plane. 

T h e  K-center  spectrum h a s  been de tec ted  in both gallium- and  boron-doped pul led  s i l i c o n  
c r y s t a l s .  T h e  r e sonance  h a s  not  been observed in  s i l i c o n  with s imi l a r  dopings  grown by the  float- 
zone  technique.  T h e  oxygen concentrat ions in t h e s e  l a t t e r  c r y s t a l s  is approximately 10' 6/cm3 as 

compared with 10' */cm3 for  the pulled sil icon c r y s t a l s .  In the  float-zone s i l i c o n  i r rad ia ted  at 

1 MeV at  a f lux  of 5 x 10l6 el/cm2 only the J - cen te r   appear^.^ Part of the  J - cen te r  spec t rum is 
observed  in thepu l l ed  c r y s t a l s  a long  t h e  K-center (see F i g .  6) but b e c a u s e  of its low product ion 
r a t e  is usua l ly  not  s e e n .  

Another condi t ion for the de tec t ion  of t h e  K-center  appea r s  to be  t h e  r e s i s t i v i ty  of the  
material .  At  l a rge  f luxes  t h e  dens i ty  of the damage  c e n t e r  d e c r e a s e s  and ,  in some i n s t a n c e s ,  is 
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n o t  de t ec t ab le  at a l l .  T h e  s i l i con ,  in  t h e s e  c a s e s ,  h a s  undergone a c h a n g e  in  t h e  room-temperature 
res i s t iv i ty  from 2 Q-cm to 1000 Q-cm b e c a u s e  of t h e  bombardment.  Af t e r  annea l ing  t h e s e  s a m p l e s  
the  res i s t iv i ty  is reduced to 35 Q-cm, a n d  the  K-center r e s o n a n c e  r eappea r s .  

I 
DECREASING ti QAUSS 1 --m 

Fig.  6. EPR spectrum of irradiated silicon showing the K-center resonance and 
part of the J-center resonance [H is  perpendicular to the (100) plane.]. 

T h e  dens i ty  of K-centers  w a s  obtained for i r rad ia t ions  performed at  1 MeV a n d  6.6 MeV 
for flux r anges  from 1 0 1 6 e l / c m 2  to 5 x 1 0 ” e l / c m 2 .  T h e  plot of t h e s e  d a t a  is s h o w n  in  Fig. 7. 
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Two d i s t inc t  regions a r e  ev ident  in both curves.  T h e  d iv is ion  of t h e s e  two regions occur s  at 

d i f f e ren t  f lux  poin ts  for  the  two cu rves .  In the low flux range the  de fec t  dens i ty  is s e e n  to in- 
c r e a s e  l inearly with f lux.  T h e  introduction rates obta ined  from th i s  part  of the  cu rves  a r e  0.1 cm- '  
and  0.5 c m - l  for 1 MeV and 6.6 MeV, respec t ive ly .  However ,  t h e s e  va lues  should b e  modified to 

0.03 cm-1 and  0.15 cm- ' ,  respec t ive ly ,  as d i s c u s s e d  on page  14. At  theh ighe r  f luxes  the  s p i n  
dens i ty  begins  to dec rease .  In fact, for the higher  energy irradiation the dens i ty  d iminishes  to 

the  point where i t  is no longer de t ec t ab le .  

Attempts  to de tec t  t he  K-center in s i l i con  irradiated at 700 keV up to f luxes  of 5 x 10'6el/cm2 
were unsuccess fu l .  T h i s  r e su l t  i nd ica t e s  that  the  production ra te  of th i s  de fec t  falls off sha rp ly  
be tween 1 MeV and  700 keV. 

T h e  d i f f icu l t ies  of making abso lu te  K-center dens i ty  de te rmina t ions  from e lec t ron  s p i n  
r e sonance  d a t a  were pointed out in Section I-D. For th is  r eason ,  t he  r e sonance  was  inves t iga t ed  

as a function of modulation frequency,  and ampli tude and  s w e e p  ra te .  It w a s  found tha t  both 
c h a n g e s  in modulation frequency (from 40 c y c l e s  to 400 c y c l e s )  and  the  s w e e p  rate of t h e  magnet ic  
field have little effect on the  in tens i ty  of the s i g n a l .  T h i s  w a s  determined by comparing t h e  reso-  
n a n c e s  of s e v e r a l  s amples  to the  s igna l  from the  re ference  sample .  Changes  in modulation ampli- 
tude d id ,  however ,  change  the  ra t io  of the  K-center r e sonance  s i g n a l  to  the  re ference  s igna l .  
T h i s  is to b e  expec ted  s i n c e  the l inewid ths  are different.  A p lo t  of the  ampli tude of the  K-center  
and  re ference  s i g n a l s  as a function of modulation f i e ld  is shown in F ig .  8. T h e  reference s i g n a l  

Fig.  8. The dependence of the dispersion resonance amplitude on modulation field. 
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i n c r e a s e s  l inear ly  a s  one  might a n t i c i p a t e  for  a nonsa tura ted  l i n e  a n d  then begins  to d e c r e a s e  
when the modulation f ie ld  approaches  its l inewidth.  T h e  K-center ,  on the  o ther  hand,  b e h a v e s  
according to Weger’s7 prediction for inhomogeneously broadened l i n e s ;  compare t h i s  curve  to 

the bottom curve in F i g .  2. If i t  is now a s s u m e d  tha t  themaximum s i g n a l  ob ta ined  represents  t h e  
total suscept ib i l i ty  (or total  s p i n s )  of t h e  s y s t e m s ,  we  c a n  make  a determinat ion of t h e  K-center  
dens i ty .  We already know the number of s p i n s  of the  r e f e r e n c e  s a m p l e  ( s e e  Sec t ion  I-D). Although 
in prac t ice  a modulation f ie ld  of 0.32 G w a s  u s e d  b e c a u s e  i t  w a s  more convenient  in terms of 

the ampli tudes and the  s h a p e s  of the  s i g n a l s ,  a s imple  cor rec t ion  c a n  b e  made  to the s p i n  numbers  
of the K-center and reference s a m p l e  from t h e  d a t a  presented  in  F i g .  8. 

F. DISCUSSION 

T h e  K-center s p i n  resonance  d a t a  show tha t  i t  is readi ly  produced in  pul led p-type s i l i c o n  
c r y s t a l s  and not  in f loat-zone mater ia l .  T h e  la rger  oxygen concent ra t ion  in  t h e  pul led c r y s t a l s  
ind ica tes  tha t  oxygen is required in the  formation of t h i s  paramagnet ic  damage  center .  Further-  
more, t h e  observat ion of t h e  K-center  resonance  in  s i l i c o n  conta in ing  e i t h e r  boron or gal l ium 
demonst ra tes  tha t  the defect is not  direct ly  associated with a s p e c i f i c  impurity.  T h e  p r e s e n c e  
of the acceptor  appears  to b e  n e c e s s a r y  in  order  to provide t h e p r o p e r  c h a r g e  state for d e t e c t i n g  
the damage center .  T h e  e v i d e n c e  for this  comes  from t h e  combined experimental  observa t ions  
of the fai lure  to d e t e c t  the c e n t e r  in  s a m p l e s  i r radiated with la rge  f luxes  and  the  s imul taneous  
change  in  res i s t iv i ty  of the  sample .  T h i s  is supported by the annea l ing  exper iments  of t h e s e  
par t icular  s a m p l e s  in which a reduction in  res i s t iv i ty  a n d  the re-appearance of the  K-center  
s i g n a l  a r e  s imultaneously brought about .  T h i s  s u g g e s t s  tha t  the  d e t e c t i o n  of the  K-center  is 
dependent  upon the locat ion of t h e  Fermi  leve l .  C o n s i s t e n t  with t h i s  picture  a r e  the  quant i ta t ive  
data of t h e  s p i n  dens i ty  var ia t ion with flux. From F i g .  7 i t  is s e e n  tha t  the  damage  d e n s i t y  in- 
c r e a s e s  l inear ly  with flux up to a cer ta in  point.  I t  b e g i n s  to d e c r e a s e  at a flux of 3 x 10’’ e l / c m 2  
and 7.5 x 10l6 el /cm2 for the 1-MeV and 6.6-MeV irradiat ions,  respec t ive ly .  T h e  s i g n i f i c a n c e  
of t h i s  wil l  become apparent  in t h e  next  paragraph. 

T h e  car r ie r  removal ra te  in  p-type s i l i c o n  h a s  been  inves t iga ted  thoroughly.  ’ o #  ’’ In Fig. 9 
we reproduce S p a c e  Technology Labora tor ies  d a t a  on the  introduction rate  of the  car r ie r  removal 
site as a function of energy.  I t  c a n  b e  s e e n  t h a t  t h i s  site, which is l o c a t e d  at 0.3 e V  a b o v e  the  
va lence  band, h a s  an introduction ra te  of 0.04 cm-’ at 1 MeV and 0.2 cm-’ at 6.6 MeV, or a rat io  
of 5:l in introduction rate .  Note also tha t  the in i t ia l  s l o p e s  in  F i g .  7 a r e  in the  rat io  of 
about  5:1, a n d  s i n c e  t h e s e  s l o p e s  a r e  proportional to introduct ion rate ,  t h i s  is good agree-  
ment. Us ing  the introduction r a t e s  for the car r ie r  removal site w e  c a n  determine the flux 
required to c h a n g e  the res i s t iv i ty  of the s i l i c o n  s a m p l e s  u s e d  in our experiments .  T h e  or iginal  
res i s t iv i ty  is between 1 a n d  2 Q-cm, represent ing a n  a c c e p t o r  concentrat ion close to 1 0 1 6 / ~ m 3 .  
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Fig. 9. Electron energy dependence of the E, - EV = 0.3 eV defect 
level in p-type silicon according to STL. 

We find  tha t  t he  r e s i s t i v i ty  should  change  at f l uxes  of 2.5 x lo" el/cm2 and 5 x 10" e l / cm2  
for 1 MeV and  6.6 MeV, respec t ive ly .  A s  pointed out above ,  the product ion ra te  of t h e  K-center  
beg ins  dec reas ing  at 3 x 10'' el/cm2 and  7.5 x 10l6 el/cm2, s u g g e s t i n g  tha t  t he  car r ie r  removal 
site at 0.3 e V  is re spons ib l e  for both the  change in r e s i s t i v i ty  of t h e  i r rad ia ted  s i l i c o n  and  the  
change  in cha rge  state of the  K-center. These  r e su l t s  can  be expla ined  by cons ider ing ,  for the  
condi t ion  of low f luxes ,  t ha t  some of the  holes are trapped at the  K-center  defects. A s  the  K-center 
dens i ty  i n c r e a s e s ,  the  number of ho le s  trapped also inc reases .  At  l a rge  f luxes ,  however ,  the  
number of car r ie r  removal sites h a s  increased  suf f ic ien t ly  to a l t e r  t he  r e s i s t i v i ty  and  presumably 
r a i s e  t h e  Fermi l e v e l  through t h e  K-center  level.  As  a consequence ,  the  h o l e s  a r e  empt ied  from 
the  K-center  and  t rapped at the  0.3-eV leve l .  A t  still la rger  f luxes ,  most  of the  K-centers  a r e  
empty, resu l t ing  in a fa i lure  to detect its resonance.  T h i s  model locates t h e  K-center  as ly ing  
be tween the  0.3-eV l e v e l  and  t h e  va l ence  band edge .  In view of th i s ,  it  is in t e re s t ing  to note  
tha t  Vavi lov '  
duc t iv i ty  measurements .  

h a s  reported l e v e l s  at 0.12 eV and  0.21 e V  above  the  band e d g e  from photocon- 

A s  mentioned above ,  t he  charge  s t a t e  of the  K-center  must  be pos i t i ve  s i n c e  i t  is trapping 
a hole.  T h e  observed  g-va lues ,  which show a pos i t i ve  sh i f t  from a f ree  e l ec t ron  g-value,  a r e  
c o n s i s t e n t  with the a s soc ia t ion  of a posit ive charge  with the  K-center .  
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There  is one factor which i s  no t  c o n s i s t e n t  with the  a b o v e  model.  T h i s  c o n c e r n s  the 
maximum K-center  densi ty  c a l c u l a t e d  from the  da ta .  T h e  a c c e p t o r  concent ra t ion  is s m a l l e r  than 
the K-center densi ty  by a fac tor  of 3 to 4.  T h i s  d i f f e r e n c e  may a r i s e  from t h e  a s s u m p t i o n s  made 
in trying to assess the K-center d e n s i t y  re la t ive to the conduct ion e lec t ron  d e n s i t y .  A s  mentioned 
in Sect ion I-C, i t  i s  extremely d i f f icu l t  to take  into a c c o u n t  all t h e  exper imenta l  parameters  a n d  
permutat ions of these parameters ,  germane to the in tens i ty  of inhomogeneously broadened r e s o n a n c e s ,  
s u c h  as the K-center resonance .  T o  a c t u a l l y  accompl ish  t h i s ,  a thorough theore t ica l  a n a l y s i s  of 

the K-center resonance  s h a p e  a n d  ampli tude must  b e  made for  a number of exper imenta l  condi t ions  
which h a s  to b e  verified by a c t u a l  exper iments .  T h e  e n d  r e s u l t  of s u c h  a s t u d y  may then y ie ld  
the a b s o l u t e  densi ty  of the  damage c e n t e r .  I t  is felt, however ,  tha t  t h e  return obta ined  from s u c h  
a n  effort  is not  justif ied at t h i s  t ime. 

I t  should  be pointed o u t  that  the  fac tor  of 3 to 4 does not  a l t e r  t h e  s h a p e s  of the  c u r v e s  
obtained for the  K-center d e n s i t y  a s  a funct ion of flux nor t h e  re la t ive  v a l u e s  of t h e  c u r v e s  on 
F i g .  7. T h e  points  in F i g .  7 a r e  good to within 20% on a n  arbi t rary scale. If w e  now c o n s i d e r  
the model presented a b o v e  as bei'ng va l id ,  then the  maximum K-center  d e n s i t y  must  b e  1 0 1 6 / c m 3 .  

T h i s  in turn would lower t h e  introduct ion r a t e s  to 0.03 cm-' and 0.15 cm-l for the  1-MeV and 

6.6-MeV bombardments. 

F ina l ly ,  in regard to the  nature  of the d e f e c t  there  a r e  two per t inent  facts. O n e  h a s  b e e n  
mentioned ear l ie r  and refers  to the  required p r e s e n c e  of oxygen in  the  production of the  K-center .  
T h e  s e c o n d  fact involves  the symmetry a x i s  <221>; i .e. ,  the  g- tensor  is a x i a l l y  symmetr ic  about  
the <221> a x i s .  This  direct ion poin ts  from a s i l i c o n  lattice site to t h e  next  n e a r e s t  i n t e r s t i t i a l  
posi t ion.  T h e  s imples t  picture  of the defec t ,  namely a lattice v a c a n c y  with a n  in te rs t i t i a l  o n c e  
removed from i t ,  is i n c o n s i s t e n t  with Watkins '  c o n c l u s i o n s 4  tha t  f ree  v a c a n c i e s  a r e  produced by 
low energy bombardment a n d  t h e s e  a r e  mobile at room temperature .  I t  is s u g g e s t e d  that  the c e n t e r  
involves  a subst i tut ion oxygen atom a s s o c i a t e d  with an  in te rs t i t i a l  s i l i c o n  atom. F a i l u r e  to detect 

a n y  hyperfine interact ion,  however,  h a s  prevented u s  from explor ing further t h i s  s u g g e s t e d  con-  
figuration. 

G. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

In summary, the s p i n  r e s o n a n c e  inves t iga t ions  on i r radiated p-type s i l i c o n  h a v e  shown 
tha t  the  dominant paramagnet ic  defec t  h a s  pr incipal  a x e s  a long  the  <221>, <l iO>,  and  <11&. 
T h e  introduction rate of t h i s  d e f e c t  is 0.03 cm-' a n d  0.15 cm-' at  1 MeV and 6.6 MeV, respec-  
t ively.  T h e  defec t  leve l  is e s t a b l i s h e d  as  lying between 0.3 e V  and  the  v a l e n c e  band from the 
var ia t ion of defec t  dens i ty  with flux. I t  is s u g g e s t e d  from the  symmetry a x i s  (<221>) tha t  the 
defec t  involves  an oxygen in a subs t i tu t iona l  site in a s s o c i a t i o n  with a next -neares t  i n t e r s t i t i a l  
s i l i c o n  atom. 
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T h e  ef for t  concerning the  K-center de fec t  is be l ieved  to be  a lmost  complete .  T w o  i t e m s  

are outs tanding .  There  a r e  samples  on hand which have  been i r rad ia ted  at 3 MeV over  a range  
of f luxes  from 5 x 10’ 5 el/cm2 to 10’’ el/crn2. Spin resonance  measurements  of t h e s e  s a m p l e s  
would g ive  us addi t iona l  d a t a  on the  K-center s imi l a r  to tha t  ob ta ined  from the  1-MeV and 6.6-MeV 
i r rad ia t ions .  Secondly,  performing corresponding exper iments  on 0.1-Q-cm and IO-Q-cm mater ia l  
would he lp  to verify the explana t ion  given above  for t he  d e c r e a s e  in K-center  dens i ty  with in- 
c r e a s e d  flux. Here t h e p e a k  of the curve  would be  expec ted  to s h i f t  b e c a u s e  of the  change  in 
accep to r  concentration. 

It shou ld  be pointed ou t  t h a t  t h i s  is our f i r s t  ev idence  of a cor re la t ion  be tween EPR 
proper t ies  and e l ec t r i ca l  p roper t ies  in si l icon. A more p rec i se  unders tanding  of the  cor re la t ion  
will  come about  when we make 1-MeV EPR measurements  at s e v e r a l  different r e s i s t i v i t i e s .  
If our  model is cor rec t  t h e s e  d a t a  shou ld  show p e a k s  a t  differing f luxes  cor re la t ing  with the  
in i t i a l  Fermi l eve l .  
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II. THE EFFECT OF IMPURITIES OF RADIATION DAMAGE I N  SILICON 

A. INTRODUCTION 

It h a s  been shown that  v a c a n c i e s  introduced by high-energy e lec t ron  i r radiat ion of s i l i c o n  
form s t a b l e  d e f e c t s  with impuri t ies .2  Watkins et a l . ,  f o r  example ,  found tha t  v a c a n c i e s  associate 

with oxygen in crucible-grown s i l i c o n ,  or with phosphorus in f loat ing-zone n-type s i l i c o n . 2  Less 
expl ic i t  e v i d e n c e  of impurity in te rac t ions  with s t ruc tura l  d e f e c t s  (vacancy- in te rs t i t i a l  p a i r s )  c a n  
be deduced from solar  cell experiments .  ’ Measurable  d i f f e r e n c e s  in o therwise  i d e n t i c a l  cells 
i r radiated under the s a m e  experimental  condi t ions  may be d u e  to defect formation with random 
t race  impuri t ies  in the cells. In genera l ,  vacancy  impurity combina t ions  c a n  b e  e x p e c t e d  to h a v e  
e lec t r ica l  properties which depend upon the  s p e c i f i c  impurity involved. F o r  example ,  t h e  energy  
l e v e l s  a s s o c i a t e d  with t h e s e  d e f e c t s  may occur  at d i f fe ren t  l o c a t i o n s  in  the forbidden energy  
gap.  ’ 

It h a s  long been thought tha t  s p e c i f i c  impuri t ies  might be found which c a n  markedly re- 
d u c e  radiat ion damage in s i l i c o n  s o l a r  cells. Although s i l i c o n  solar cells a r e  current ly  the most  
re l iable  energy sources for satellite appl ica t ions ,  they a r e  re la t ive ly  vulnerable  to radiat ion 
damage.  T h e s e  ce l l s  require high minority-carrier l i fe t ime for e f f ic ien t  operat ion,  a n d  t h i s  life- 
time is very sens i t ive  to  radiat ion.  T h e  reduct ion of l i fe t ime s e n s i t i v i t y  to radiat ion damage  by 
s p e c i f i c  impurity interact ions with s t ruc tura l  d e f e c t s  is the  goa l  of the  work d e s c r i b e d  below.  

T h e  following impuri t ies  h a v e  been  s e l e c t e d  for immediate  s tudy:  Al,  Au, B, C u ,  F e ,  Ga ,  
Gd, In, and Li. The impuri t ies  were c h o s e n  for a var ie ty  of r e a s o n s .  In te rs t i t i a l  in te rac t ions  
with A1 a n d  vacancy in te rac t ions  with Au and  Cu h a v e  a l ready  been  
diffuse rapidly as in te rs t i t i a l s  in s i l i c o n ;  consequent ly ,  vacancy  in te rac t ions  with t h e s e  impuri t ies  
a r e  moreprobable .  Fe also d i f fuses  rapidly and  h a s  the  added advantage  of be ing  paramagnet ic .  
T h u s ,  s p i n  resonance  s t u d i e s  may supplement  l i fe t ime s t u d i e s  when Fe is u s e d .  T h e  column 111 

e lements  - B, G a ,  and In were c h o s e n  to s t u d y  the effect of the  major dopant .  Gd h a s  been re- 
ported to i n c r e a s e  the radiat ion r e s i s t a n c e  of s o l a r  cells. ’ 
above ,  m a s s  spectrographic  a n a l y s e s  of s o l a r  cell mater ia l  s u g g e s t e d  t h e u s e  of B, Cu,  a n d  Fe. 

Li a n d  Cu 

In addi t ion to the  r e a s o n s  cited 

T h e  property s e l e c t e d  to s t u d y  the effect of the  a b o v e  impuri t ies  experimental ly  is the  
diffusion length .  While t h i s  parameter  is n o t  as fundamental  as t h e  car r ie r  l i fe t ime,  i t  is more 
direct ly  re la ted  to the s o l a r  cell short-circui t  current .  Furthermore,  a convenient ,  s t e a d y - s t a t e  
method of measuring the d i f fus ion  length  is ava i lab le .  ’ * T h e  following s e c t i o n s  d i s c u s s  the  
work performed to da te .  
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B. THEORY AND EXPERIMENTAL TECHNIQUES 

1. Theory 

T h e  s p e c i f i c  parameters  which will be used  in th i s  s tudy  a r i s e  from the  equat ion  re la t ing  
minority-carrier lifetime T to the  bombardment flux 4. If w e  a s s u m e  the  total ra te  of minority- 
car r ie r  recombination is equa l  to the s u m  of t he  r a t e s  at var ious c e n t e r s ,  T is given by19 

- 1 = - 1 + (7pvf)q5 
T TO 

where T~ is the in i t i a l  l ifetime, 77 is t h e  introduction ra te  of recombinat ion c e n t e r s  in No./cm, 
(7 is the  recombination c r o s s  sec t ion  i n  c m 2 ,  v is the  thermal ve loc i ty  of the  minority car r ie r ,  
f is the  fraction of c e n t e r s  which conta in  a majority car r ie r  ( the  f i l l ing  factor),  and  4 is the  
inc ident  flux in No./cm2. S ince  the  diffusion length  is re la ted  to  T and the  minority car r ie r  dif- 
fusion cons t an t  D as 

L2 = DT, (3) 

Eq.  (2) c a n  be rewrit ten ,in terms of L as 

+ Kq5. 1 1 
L2 Lo 

(4) 

The  parameter  K (not n e c e s s a r i l y  a constant!)  con ta ins  the  proper t ies  a s s o c i a t e d  with a re- 
combinat ion cen te r  together with the  Fermi l e v e l  and  temperature  dependence  through the  fi l l ing 
factor f .  Therefore ,  K w a s  chosen  t o  s tudy  impurity in te rac t ions  in i r rad ia ted  s i l i con .  Of cour se ,  
carefu l  account  of the r e s i s t i v i ty  and temperature must  be  made in  eva lua t ing  exper imenta l  d a t a  
b e c a u s e  of the  p re sence  of the fi l l ing factor in K. 

T h e  va lue  of K can  be determined by f i t t ing  Eq.  (4) to the exper imenta l  d a t a  with the  
measured  va lue  of Lo. Alternatively,  s ince  

L =  KC$)-'/^ ( 5 )  

at high f luxes ,  any point in t h e  high-flux region can  be used  to  find K. T h e  exper imenta l  d a t a  
on a log-log graph shou ld  have  a s l o p e  of 0.5 accord ing  to E q .  ( 5 ) .  

T h e  other parameter  chosen  for this s tudy  is the diffusion length  L, a f t e r  a spec i f i ed  
flux. T h e  flux used  here  h a s  arbitrari ly been set as 2 x 10l5 el/cm2 at which va lue  Eq.  (5) 
is genera l ly  ,applicable.  T h e  va lue  of L, is a convenient  number which is re la ted  more d i rec t ly  
to s o l a r  cell performance. 
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2. Measurement of the Diffusion Length L 

T h e  response m of a s o l a r  cell to  pene t ra t ing  radiat ion is def ined  as 

where I s =  i s  the  short-circuit  cur ren t  in amperes ,  I, is the inc ident  current  of the  pene t ra t ing  
radiation in amperes,  S is the s p e c i f i c  ionizat ion produced by t h e  radiat ion (cor rec ted  for re- 
f lection from t h e  ce l l  sur face)  in  pairs /cm,  and  Ls and L, a r e  t h e  diffusion lengths  on both s i d e s  
of the junction in cm.  If S is known, the  sum of t h e  diffusion lengths  c a n  b e  determined from a 

measurement  of I sc  and  I,. 

Although Eq. (6) is writ ten in  terms of Ls + L,, the diffusion length  LB in  the  base 
region of  a s i l icon  s o l a r  cell far  e x c e e d s  the diffusion length  Ls in  the  d i f fused  or “sk in”  region 
even  af te r  a s u b s t a n t i a l  i r radiat ion.  For  example,  Ls is typical ly  less than the  junct ion depth  
which is on the order of 0.5 p whi le  L, e x c e e d s  100 ,LL before and 10 p a f t e r  i r radiat ion with 
5 x 10l5 e l / c m 2  (1 MeV). Consequent ly ,  E q .  (6) c a n  be rewrit ten s o l e l y  in terms of L, with very 
little error.  B e c a u s e  of th i s  argument,  the d is t inc t ion  between L, a n d  (L,  + L B )  is not  preserved  
below; the  experimental  value of L is to b e  taken as indica t ive  of the base mater ia l  of the  s o l a r  
cell. 

A convenient  technique”  is a v a i l a b l e  for determining L. T h e  penet ra t ing  radiat ion used  
is a beam of 1 - M e V  e l e c t r o n s  with a suf f ic ien t ly  low in tens i ty  and  durat ion s o  a s  not  to c h a n g e  
s igni f icant ly  the  parameter being measured.  T h e  range2’ of 1-MeV e l e c t r o n s  in s i l i c o n  is 66.5 mi ls ;  
h e n c e ,  t h e s e  par t ic les  e a s i l y  pene t ra te  the 10-mil (or l e s s )  a c t i v e  region of a s i l i c o n  s o l a r  cell. 
Almost all of their  energy islost  in producing ionizat ion in the c r y s t a l .  B e c a u s e  of the energy 
loss, the ionizat ion var ies  with depth,  reaching a maximum value  at a cer ta in  depth .2’  While the 
s p e c i f i c  ionizat ion c a n  be computed in  pr inc ip le ,21  i t  is suff ic ient ly  diff icul t  to warrant  a n  ex-  
perimental  measurement,  e s p e c i a l l y  s i n c e  the experimental  arrangement  wi l l  inf luence the v a l u e  
obtained.  An ionizat ion curve is measured by p lac ing  absorbers ,  preferably of s i l i c o n ,  but  a c t u a l l y  
(more prac t ica l ly)  of AI which h a s  a l m o s t  the  s a m e  d e n s i t y ,  before a cell which is suf f ic ien t ly  
damaged s o  tha t  L d o e s  not  change ,  a n d  measuring the resu l t ing  Isc  for a given I,. In e f fec t ,  
the absorbers  move the  junction to var ious  d e p t h s  where the ion iza t ion  produced by the  beam 
is sampled .  S ince  most of the  beam energy i s u s e d  in producing e lec t ron  hole  p a i r s  with a n  average  
expendi ture  of 3.6 eV/pair  in s i l i c o n , 2 2  
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where  t is the  absorber  t h i ckness  in g/cm2,  E is the  inc ident  e lec t ron  energy ,  and  p is the  dens i ty  
of s i l i c o n  (2.328 g/cm3).  T h e  va lue  of L i s  determined from the  a r e a  under  the  curve  of Is,/IB v s .  t 

and  the  other known quan t i t i e s .  Once  L is known, S can  be  spec i f i ed  s i n c e  

B e s i d e s  obtaining S from t h e s e  measurements ,  one  also ob ta ins  the  absorber  t h i ckness  for which 
the  maximum s p e c i f i c  ion iza t ion  S o  occurs.  Subsequent  measurements  of L in  s o l a r  cells a r e  
made us ing  th i s  absorber  t h i ckness .  T h e  u s e  of t h e  maximum va lue  of S is preferred,  of cour se ,  
s i n c e  the  variation of S with th i ckness  at th i s  va lue  is a minimum. 

Two cor rec t ions  shou ld  be made  to t h e  va lue  of S o .  F i r s t ,  some of the  e l ec t ron  energy  is 
backsca t t e red  from the absorber  su r face .23  T h e  va lue  of So is multiplied by 0.964 to accoun t  for 
t h i s  effect.23 Secondly,  the  energy l o s s  for the inc ident  e l ec t rons  depends  not only on t he  abso rbe r  
t h i c k n e s s  but also on the  number of e lec t rons  per  gram of absorber;  i.e., on Z/A where Z is the  
a tomic  number and  A is the  atomic mass .20  In the  experimental  arrangement ,  aluminum is used  
to reduce  t h e  par t ic le  energy  while  s i l i con  is used  to measure the ra te  of energy loss. S ince  

th icker  aluminum than s i l i c o n  abso rbe r s  are required to produce the s a m e  pa r t i c l e  energy.  Con- 
sequen t ly ,  t he  a r e a  under  t h e  ionization curve is overes t imated  by 1 /0.96. To accommodate  th i s  
cor rec t ion ,  S o  should  be  multiplied by 1/0.96. T h e  to t a l  correction to the  va lue  of 

So is 0.964/0.% = 1. 

3. Device Structures 

T h e  method c h o s e n  for measuring L requi res  a junction to  s e p a r a t e  the  electron-hole 
pa i r s  produced by the  ionizing beam. T w o  requirements were imposed on the  method of preparing 
the  junction to insu re  t h a t  we  s tudy  impurity effects and  not  merely techniques  of junction fab- 
rication. F i r s t ,  the  junction must  be formed e a s i l y ,  so  tha t  a minimum of t i m e  is s p e n t  on d e y i c e  
fabrication. Secondly,  all p rocess ing  temperatures should  be as  low as p o s s i b l e  to prevent  effects 
due  to h e a t  t reatment  from obscur ing  impurity effects. To a c h i e v e  t h e s e  a ims ,  w e  f i r s t  s tud ied  
su r face  barrier d e v i c e s  us ing  a s u i t a b l e  metal depos i t ed  on a s u i t a b l y  prepared blank of p- or 
n-type c o n d u ~ t i v i t y . ~ ~ ~ ~ ~  B e c a u s e  it w a s  difficult  to dupl ica te  the  d i f fus ion  length  v a l u e s  found 
in  s o l a r  cells when the  s u r f a c e  barrier s t ruc ture  w a s  used  on p-type material ,  w e  adopted  ano the r  
p rocess  involving lithium, one of the  impurities under s t u d y  in th i s  program. Li thium is a donor 
which d i f fuses  rapidly in s i l i c o n ,  s o  tha t  i t  c a n  be used  to  form a junction at  a low temperature .  
T h i s  d i f fused  s t ruc ture  w a s  used  for p-type, wh i l e  the  s u r f a c e  barrier was  used  for n-type s i l i con .  
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C. RESULTS 

1 .  Specific Ionization 

T h e  s p e c i f i c  ionizat ion h a s  been  measured  in  a number of s o l a r  cells made  by s t anda rd  
phosphorus diffusion or by lithium diffusion us ing  a n  exper imenta l  s e t u p  which  h a s  been  adhe red  
to s i n c e  t h e  s t a r t  of t h i s  program. In t h i s  s e t u p ,  t h e  cells a remoun ted  i n  a i r  on a coppe r  disc 
1-1/2 i n c h e s  away  from the  beam output  window of t h e  Van d e  Graaff genera tor .  T h e  output  window 
is 1 . 5 4 1  aluminum. T h e  th i ckness  of t h i s  window and  t h e  aluminum equ iva len t  for the  a i r  s p a c e  
(1.8 mils)  w a s  added to the absorber  t h i ckness  u s e d  i n  computing So.  T h e  a c t u a l  abso rbe r  w a s  
loca ted  within 1 / 2  inch of the  cell face. S ince  t h e  beam w a s  s c a n n e d  horizontal ly  a n d  ver t ica l ly  
to cove r  a n  a r e a  of a t  least 4 cm2  whi le  the  cell a r e a  w a s  genera l ly  less than 1 cm2,  no cor rec t ion  
for multiple sca t te r ing  w a s  required to accoun t  fo r  the  ce l l -absorber  s epa ra t ion .  26 

T h e  nominal beam energy  w a s  1 MeV. Aluminum abso rbe r  measurements  coupled  with a 

Ka tz  and  Penfo ld  ana lys i s27  ind ica ted  tha t  t h e  t rue  beam energy  w a s  c l o s e r  to 1.1 MeV. T h e  
va lue  u s e d  in  t h e  ca lcu la t ion  of So w a s  1 MeV. 

Typ ica l  resu l t s  obtained a r e  shown  i n  Fig. 10 where  m is p lo t ted  v s .  A1 abso rbe r  t h i c k n e s s  
for a phosphorus-diffused s o l a r  cell. F o u r  runs taken  over  a n  ex tended  t ime in te rva l  a r e  shown  
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F ig.  10. m vs. aluminum absorber thickness. 
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to i l lus t ra te  t h e  reproducibil i ty of th i s  measurement.  Small c h a n g e s  a r e  s e e n  to occur  which  
probably a r i s e  in  s l i g h t  var ia t ions in absorber  pos i t ion ,  beam dis t r ibut ion,  etc. A measure  of 

t h e s e  c h a n g e s  is obtained from a comparison of the  va lue  of So for 12 m i l s  of aluminum, the  
aluminum absorber  t h i c k n e s s  for t h e p e a k  value of S, the  va lue  of L from a n  integrat ion of t h e  
curve  a r e a ,  a n d  t h e  va lue  of L obtained by dividing t h e  v a l u e  of m at 12 mi ls  of aluminum by 254 
( s e e  below). T h i s  comparison is shown in T a b l e  I .  A 3% back-sca t te r  correct ion w a s  incorporated 
in t h e s e  va lues .  T h e  n e t  correct ion as seen above is unity;  however ,  the back-sca t te r  correct ion 
h a s  been  u s e d  throughout t h i s  s t u d y  to maintain c o n s i s t e n c y  with ear ly  work. 

(MILS) 

13.5 

14.2 

12.4 

13.5 

I 
FROM CURVE AREA m/254 

5.9 5.8 

5.9 5.6 

5.8 6.0 

5.9 5.7 

CURVE 

3/31 /64 

4/21/64 

TABLE I 

P A R A M E T E R S  FROM FIG. 10. 

SO 
(PAIRS/p) 

252 

244 

262 

251 

+ I  

T h e  l a r g e s t  var ia t ion in T a b l e  I occurs  in the absorber  t h i c k n e s s  for t h e p e a k  va lue  of S ;  
otherwise ,  the  var ia t ions  a r e  approximately 2 4% of t h e  average  va lue .  T h e s e  r e s u l t s  h a v e  been  
covered  in s o m e  d e t a i l  to i - l lustrate  and  emphas ize  the  long time reproducibi l i ty ,  as w e l l  as  t h e  
accuracy ,  of t h e  s u b s e q u e n t  data. 

Ear ly  measurements  of So with 12 m i l s  of aluminum absorber  y ie lded  a v a l u e  of 254 p a i r s / p  
with a 3% back-sca t te r  correct ion.  Subsequent  measurements  on a total of 2 5  (phosphorus-  a n d  
l i thium-diffused) cells i n d i c a t e d  a n  average  v a l u e  of 257 p a i r s l p  with a s tandard  deviat ion ud 

of 6. T h e  average  absorber  t h i c k n e s s  for peak ionizat ion w a s  11.8 mi ls  with a ad of 1.3 m i l s .  
T h e  publ i shed  v a l u e  of So for  12 m i l s  of aluminum is 225 pa i rs /p  for a beam energy of 1 MeV. ’* 
If our v a l u e  of 257 p a i r s / p  is corrected for the  higher  beam energy of 1.1 MeV, it becomes  
234 pa i rs /p ,  4% higher  than the  publ ished value.  

An So value  of 254 p a i r s l p  with 12 m i l s  of aluminum w a s  u s e d  throughout t h i s  s tudy .  T h e  
experimental  f ixture  w a s  u s e d  for irradiating the  cells as w e l l  as for t h e  diffusion length measure-  
ments .  In i t ia l  and  per iodic  measurements  of L w e r e  made by reducing the  beam in tens i ty  by o n e  
to two orders  of magnitude, inser t ing  the  12-mil absorber  by remote control  a n d  quickly measuring 
the  short-circui t  current  of t h e  cells. Beam-current measurements  were  made  with an  e v a c u a t e d  
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Faraday cup .  T h e  d a t a  were a n a l y z e d  to f ind the s l o p e  of L VS. +, the  v a l u e  of K ,  a n d  the dif- 
fus ion  length remaining a f t e r  2 x 10' ' el /cm2. .  T h e  fol lowing s e c t i o n s  p r e s e n t  the  r e s u l t s  ob ta ined  
on n- and  p-type s i l icon  doped with var ious impuri t ies .  

2. n-type Silicon 

In adhering to the requirements  of minimum p r o c e s s i n g  a n d  h e a t  t reatment ,  w e  u s e d  Au 
s u r f a c e  barr iers  on carefu l ly  prepared n-type b lanks .  If the  s u r f a c e s  were not  w e l l  prepared,  the 
resul t ing s t ruc ture  had  a low va lue  of L. Subsequent  i r radiat ion of t h e s e  u n i t s  l e d  genera l ly  to 

la rge  v a l u e s  of K and to s l o p e s  of L v s .  q5 different  from 0.5. An arbi t rary lower l imit  of 100 ,U 

for  the in i t ia l  value of L w a s  u s e d  as a cr i ter ion for  s e l e c t i n g  cells for s u b s e q u e n t  i r radiat ion 
a n d  a n a l y s i s .  Adoption of t h i s  cr i ter ion l e d  to r e s u l t s  more typ ica l  of t h o s e  obta ined  with d i f fused  
cells. 

T h e  material  s t u d i e d  w a s  phosphorus-doped,  oxygen-free,  low d is loca t ion  s i l i c o n  s u p p l i e d  
by T e x a s  Instruments,  Inc.  Material  r e s i s t i v i t i e s  were  1 and 10 0 - c m .  T h e  impurity i n v e s t i g a t e d  
w a s  lithium-diffused uniformly throughout the b lanks .  T h i s  mater ia l  w a s  compared with unt rea ted  
and  heat- t reated material  which h a d  undergone the same p r o c e s s i n g  a n d  h e a t  t reatment  as t h e  
l i thium-diffused material  e x c e p t  that  l i thium w a s  exc luded .  S i n c e  l i thium is a donor,  i ts  addi t ion 
resu l ted  in a large drop in  res i s t iv i ty .  Consequent ly ,  t h e  r e s u l t s  mus t  be carefu l ly  compared to 

e l imina te  effects due merely to a var ia t ion of res i s t iv i ty  in the  three groups of cells. 

An example of the diffusion length  d a t a  for th ree  s a m p l e s ,  one  unt rea ted ,  one  hea t - t rea ted  
and  one li thium-diffused, a r e  shown in F i g .  11. H e a t  t reatment  invariably resu l ted  in  a n  Lo va lue  

HEAT-TREATED 

IO'* IO" +(e/cma) Ion 

F ig .  11. L vs. q5 for surface barrier cells.  
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below 100 p .  When lithium w a s  diffused into the  sample ,  however ,  Lo w a s  comparable  to the  
va lue  in untreated material .  F igu re  11 shows tha t  t he  va lue  of L, is comparable  for t he  three  
types  of cells in s p i t e  of t h e  variation in Lo. T h e  convergence  of the  experimental  da t a  at  high 
f luxes  is surpr i s ing  s i n c e  the r e s i s t i v i ty  of the  lithium-diffused sample  is 40 t imes less than the  
unt rea ted  and  hea t - t rea ted  samples .  

T h e  s a m e  type  of behavior  was  observed in both the  1- and 10-n-cm cells. Figure  1 2  

s h o w s  L, vs .  the  s a m p l e  r e s i s t i v i ty  before bombardment. E a c h  poin t  r ep resen t s  one  cell. In s p i t e  
of the  addition of lithium with a marked reduction in  r e s i s t i v i ty ,  L, h a s  e s s e n t i a l l y  the  s a m e  
va lue  in the  l i thium-diffused cells as i n  the unt rea ted  cells. I t  is as  if the  mater ia l  remembered 
its in i t i a l  r e s i s t i v i ty  and  behaved accordingly.  
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Fig. 12. L, vs. resistivity for surface barrier cells.  

The  va lue  of 1 /K is plo t ted  vs .  sample r e s i s t i v i ty  before bombardment in F ig .  13. T h e  
same value  of 1/K is obta ined  in all cells made from the same s t a r t i ng  mater ia l ,  even  though 
the  lithium-diffused cells have  a much lower r e s i s t i v i ty .  Some objec t ion  may be made here  s i n c e  
the  s l o p e  of L v s .  + w a s  not  exac t ly  0.5 for all of t h e c e l l s .  T h e  range of v a l u e s  found for the  
s l o p e  is shown in T a b l e  11. Although these  v a l u e s  d o  not ag ree  we l l  with theory,  K w a s  computed 
from Eq. (4) us ing  the  in i t i a l  va lue  of L and its va lue  after a flux of 1 x lo1* e l / c m 2 .  T h e  dis- 
agreement  between theory and  experiment  in t h e v a l u e  of the  s l o p e  is d i s c u s s e d  on the  fol lowing 
pages .  
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Fig.  13. 1/K vs. resistivity for surface barrier cells.  

TABLE I1 
S L O P E  OF L V S .  q5 

C E L L  
~ ~~ 

1 Q-cm untreated 
1 0 - c m  heat-treated 
1 a - c m  Li-diffused 

10 a - c m  untreated 
10 a - c m  heat-treated 
10 a - c m  Li-diffused 

SLOPE 

0.45 - 0.48 
0.41 - 0.47 

0.47 - 0.49 

0.40 - 0.43 

0.40 - 0.41 

0.44 - 0.45 

While the  d iscuss ion  wi l l  recons ider  the r e s u l t s  of t h i s  s e c t i o n ,  s o m e  poin ts  c a n  appro- 
pr ia te ly  be made here. It c a n  be argued tha t  the above  r e s u l t s  a r e  only c o n s i s t e n t  with the de-  
gradation of the surface barr ier  a n d n o t  of the b a s e  mater ia l .  While t h i s  argument  c a n n o t  be 
completely refuted at present ,  the  fol lowing cons idera t ions  s h o w  t h e  data to  be s e l f - c o n s i s t e n t .  
F i r s t ,  t h e  untreated and heat- t reated s a m p l e s  h a v e  the proper trend with res i s t iv i ty ;  i.e., L, and  
1 / K  a r e  higher  for  higher b a s e  res i s t iv i ty .  Obviously,  s o m e  knowledge of the  b a s e  res i s t iv i ty  
h a s  been  imparted to the r e s u l t s .  Secondly,  although L, and  K v a l u e s  a r e  not  a v a i l a b l e  for B- 
diffused cells made from the s a m e  mater ia l ,  t h e s e  v a l u e s  c a n  b e  compared to t h o s e  obta ined  on 
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cells made from other n- type mater ia l .  A group of Hel io tek  cells made from 1 Q-cm, oxygen- 
conta in ing  material  had  L, v a l u e s  ranging from 2.9 to 3.1 p and 1/K va lues  from 1.6 to 1 . 7 ~  10’. 
Va lues  of 1 / K  reported by STL a r e  0.49 - 1 . 8 ~  10’ for 1-Q-cm, oxygen-free cells; 0.72 - 1.1 x 10’ 
for 1-Q-cm Heliotek cells; and  2.7 - 6.7 x 10’ for IO-Q-cm, oxygen-containing cells.” T h e s e  
va lues  compare favorably wi th  those  found for t h e  sur face-bar r ie r  cells; namely,  a n  L, va lue  of 
2.0 to 2.5 p and a 1 / K  va lue  of 5.6 to 9 x lo7 for t he  1-a-cm cells, and  1.5 to 2.2 x 10’ for t he  
IO-Q-cm c e l l s .  T h e  sur face-bar r ie r  c e l l s  gave r e s u l t s  then which a r e  reasonable .  

3. p-type Silicon 

Although the  su r face  barrier g a v e  r e s u l t s  t yp ica l  of n-type material ,  its u s e  genera l ly  
l ed  to a typ ica l  r e s u l t s  for p-type material .  In m o s t  cases, Lo w a s  we l l  below 100 p,  and the  
v a l u e s  of L, and  1/K were sma l l e r  than those obta ined  with phosphorus-diffused cells. T h e  
problem apparent ly  w a s  d u e  to improper surface preparat ion and  to c h a n g e s  occurr ing in the  sur- 
face barrier during the irradiation in a i r .  Only in i so l a t ed  c a s e s  were  the  r e s u l t s  c o n s i s t e n t  with 
those  obtained with phosphorus-diffused ce l l s .  B e c a u s e  of t h i s  difficulty,  the  junc t ions  on p- type 
mater ia l  were made by diffusion with phosphorus or lithium. 

T h e  b a s e  impurit ies which were  studied were  Al, B, Cu, Fe, Ga,  Gd, and  In. Exper iments  
in which lithium is incorporated throughout the b a s e  region, as opposed  t o  those  where  lithium is 
used  s o l e l y  to form the  junction, are j u s t  beginning and  wi l l  not be  reported here .  Of the  above  
impurit ies,  Cu, Fe, and  in  some  cases, A I  and  Gd, when added  to the  c r y s t a l  e i the r  during growth 
or by diffusion, s eve re ly  reduced Lo to 50 p or less, so t ha t  meaningful  r e su l t s  could  not  be 
obta ined .  ( T h e s e  low va lues  of Lo occurred in both the phosphorus-  and  the  lithium-diffused cells; 
however ,  Lo w a s  invariably h igher  i n  theli thium than in  the  p-diffused cells.) To s tudy  the  effect 
of t h e s e  impurit ies,  then, s m a l l e r  amounts must  be added  to  the  c r y s t a l  to preserve  the  va lue  of Lo. 

Typ ica l  d a t a  obta ined  in th i s  s tudy a r e s h o w n  in F i g .  14 for phosphorus-  and  l i thium-diffused 
cells made from s imi la r  base mater ia l  and with the  s a m e  va lue  of Lo. T h e  figure s h o w s  tha t  the  
lithium-diffused cell is more radiation-resistant than the  phosphorus-diffused cell. T h e  s l o p e  of 

the cu rve  for the  lithium-diffused cell is 0.39 whi le  tha t  for the phosphorus-diffused cell is 0. 50, 
in s p i t e  of the fact tha t  the b a s e  res i s t iv i ty  is the  s a m e i n  both cases. T h e  s ign i f i cance  of t h e s e  
s l o p e s  wi l l  be d i s c u s s e d  below. 

F igu res  15 and  16 show t h e  d a t a  obtained with the  phosphorus-diffused cells. T h e  va lue  
of L, a f t e r  a flux of 2 x 10’ e l / cm2  is given in F ig .  1 5  as a funct ion of b a s e  r e s i s t i v i ty  for B, 
Al, Ga,  In, Gd and  oxygen-free material. The va lue  of 1 / K  is shown in F i g .  16 for t he  same mate- 

r ia ls .  E a c h  point in both f igu res  represents  e i t h e r  o n e  or s e v e r a l  cells. Cons iderable  s c a t t e r  is 
evident  i n  both f igures ,  par t icu lar ly  F i g .  16; so t he  l i ne  has  been drawn to represent the trend of 
the da t a .  T h e  conclus ion  drawn from these  d a t a  is tha t  Al,  B, Ga,  In, and  Gd do  no t  i n c r e a s e  t h e  
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Fig. 14. Comparison of phosphorus- and lithium-diffused cells. 
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Fig .  15. L, vs. resistivity. F ig .  16. 1/K vs. resistivity. 
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The  r e s u l t s  ob ta ined  with lithium-diffused junctions in B- and  Al-doped mater ia l  a r e  shown 
in F i g s .  17 and  18. E a c h  point r ep resen t s  one cell. T h e  l i nes  in both figures represent  the range  
of v a l u e s  which were found with the  phosphorus-diffused c e l l s .  T h e  da ta  in both F i g .  17 (Lf) and  
F i g .  18 (1/K) ind ica te  tha t  lithium-diffused junctions a r e  generally more rad ia t ion- res i s tan t  than 
phosphorus-diffused junc t ions  for a b a s e  res i s t iv i ty  of approximately 2 f2-cm. Fewer  d a t a  a r e  
ava i l ab le  for 10-Q-cm material;  hence ,  t h e  s ign i f icance  of t he  da t a  in  t h i s  region is uncer ta in .  
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Fig.  17. L, vs. ini t ia l  resistivity. 
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Fig. 18. 1/K vs. initial resistivity. 

T h e  d a t a  in F i g s .  17 and 18 were  obtained from cells which were s imi la r ly  p rocessed .  
One s ign i f i can t  d i f f e rence  be tween t h e s e  cells and  those  made with phosphorus is the  junction 
depth.  B e c a u s e  lithium d i f fuses  so rapidly in s i l i con ,  i t  is d i f f icu l t  to  fabr ica te  a cell with a 

junction depth of only 1 p. T h e  inf luence  of a d e e p  junction on the  r e su l t s  w a s  inves t iga t ed  by 
fabr ica t ing  a s e r i e s  of junc t ions  and  subsequent ly  e tch ing  or lapping  the  diffused su r face  to re- 
duce  the junction depth.  T h e  r e su l t sob ta ined  on one  s e r i e s  of cells a r e  shown in F i g s .  19 and  
20 where L, and 1/K,  respec t ive ly ,  are plotted v s .  junction depth.  E a c h  point r ep resen t s  one  
cell. A gradual  downward trend is observed in  both f igures  as the  junction depth is reduced.  
T h e  ex t rapola ted  v a l u e s  of the l i n e s  ske tched  to represent  the d a t a  exceed  those  observed  in 
phosphorus-diffused cells with a junction depth of Q 0.5 p. Even  though the ex t rapola ted  v a l u e s  
look promising, however, thinner junction depths  are obviously required to demonst ra te  con- 
c lus ive ly  the enhanced  radiation r e s i s t ance  of lithium-diffused cells. 
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Fig.  19. L, vs. junction depth. 
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Fig.  20. 1/K vs. junction depth. 

Another poss ib le  consequence  of the  rapid diffusion ra te  of lithium is a n  i n c r e a s e  in  b a s e  
res i s t iv i ty  d u e  to compensa t ion .  At tempts  to e s t a b l i s h  the  car r ie r  concent ra t ion  in the  v ic in i ty  of 

the junction by capac i t ance  measurements  have  been  u n s u c c e s s f u l  at p re sen t .  T h e  junction is d e e p  
and  the  deple t ion  width pene t r a t e s  both s i d e s ;  consequen t ly ,  a n a l y s i s  of the  c a p a c i t a n c e  d a t a  
is not straightforward. Four-point-probe measurements  on the  b a s e  mater ia l ,  in to  which  lithium 
w a s  d i f fused  to form the  junc t ion ,  h a v e  not ind ica ted  any  s u b s t a n t i a l  change  in b a s e  r e s i s t i v i ty  as 

a resu l t  of t h e  junction formation. B e c a u s e  th i s  measurement  is a volume-average, however,  further 
work with capac i t ance  measurements  is obvious ly  required.  
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Another d i f f e rence  in the  lithium- and phosphorus-diffused c e l l s ,  b e s i d e s  the  va lues  of 
L, and  K ,  is the s l o p e  of t h e  L VS. 4 da ta .  The range of va lues  observed  for the s l o p e  is shown in 
Tab le  111. The  theore t ica l  s l o p e  of 0.5 is obtained only from low-res i s t iv i ty  phosphorus-diffused 
c e l l s .  T h e  s l o p e  d e c r e a s e s  for the  high-resist ivity phosphorus-diffused cells, and  much more s o  

for the  lithium-diffused cells. In s p i t e  of this d i sagreement  with theory,  t he  K va lues  shown above  
were  determined from Eq .  ( 4 )  us ing  the va lues  of  Lo and L, af te r  a flux of 1 x el/cm2. 

TABLE I11 

SLOPE O F  L VS. C#J 

BASE MATERIAL 
~ ~~ ~ 

1.5 a - c m  boron 
3-10 fl-cm boron 
1 CLcm boron, oxygen-free 
12 a c m  boron, oxygen-free 
10 fl-cm AI 
3.7 Q-cm In 
2.4 Q-cm Ga 
2 Q-cm Gd 
1.5 Q-cm boron and Gd 

P-DIFFUSED CELLS 

0.45 - 0.50 
0.40 - 0.48 
0.48 - 0.51 
0.45 - 0.46 
0.39 - 0.43 
0.42 - 0.44 
0.44 - 0.46 
0.43 - 0.49 
0.45 - 0.46 

Li-DIFFUSED CELLS 

0.33 - 0.44 
- 
0.37 
0.37 

0.36 - 0.37 
- 
- 
- 
- 

Some remarks abou t  this s l o p e  in  the h igh- res i s t iv i ty  and  lithium-diffused cells are 

appropriate  here.  The  s l o p e  wi l l  be only 0.5 accord ing  to Eq .  ( 5 )  if K is a cons t an t ;  t h a t  is, 
independent  of flux. Seve ra l  factors, all of which may occur  in prac t ice ,  c a n  lead  to a flux de- 
pendence  for K.  F i r s t ,  Eq .  ( 5 )  is based  on a recombination scheme  with only a s i n g l e  energy 
l eve l  i n  the  forbidden gap ,  whereas  a many-level s cheme  may ac tua l ly  be  more appropriate.  
Secondly,  the introduction r a t e  of the  recombination c e n t e r s  h a s  been a s sumed  cons t an t  when it 
may very wel l  h a v e  a Fermi- level  dependence.  F ina l ly ,  the fi l l ing fac tor  h a s  been assumed con-  
s t a n t  wh i l e  it obvious ly  is not s i n c e  radiation in t roduces  car r ie r  removal sites, as wel l  as re- 
combinat ion l eve l s ,  with a consequen t  movement of the  Fermi  leve l .  To i l l u s t r a t e  how c h a n g e s  
in the f i l l ing  fac tor  a lone  vary the  dependence of L on 4,  let u s  examine  expl ic i t ly  the  dependence  
of K on  the  car r ie r  dens i ty  p. 

where (E,-Ev) is thepos i t i on  of the recombination l e v e l  with r e spec t  to the  va l ence  band, Nv is 
the dens i ty  of states in  the va l ence  band, and the  o ther  symbols  have  their  customary or previously 
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a s s i g n e d  meanings.* T h e  carr ier  d e n s i t y  is a funct ion of f lux  as fol lows 

P - Po - rlc 4, 

where po  is the init ial  dens i ty  and p 

material  at room temperature,  p c  is - 0 . 2  per  cm in  n-type s i l i c o n  a n d  -0.02 per  cm in  p-type 
s i l icon .**  T h e  behavior of L in p-type mater ia l ,  b a s e d  on Eqs. (3),  ( l o ) ,  a n d  (11) w a s  computed 
for s e v e r a l  v a l u e s  of pc and in i t ia l  base res i s t iv i ty ,  a n d  is shown in F i g .  21. T h e  parameter  v a l u e s  
shown in T a b l e  IV were  u s e d  i n  the c a l c u l a t i o n s .  

is the car r ie r  removal ra te .  F o r  1-MeV e l e c t r o n s  in 1-2-Q-cm 

Fig.  21. Computed diffusion length vs. 4 for various carrier removal rates. 

TABLE IV 

PARAMETER V A L U E S  USED I N  COMPUTING L 

PARAMET E R VALUE 

U 1.6 1 0 - l ~  cm2 

V 5 x 106 c m / s e c  

D 25 crn2/sec 

1.14 x lo1’ N V  

(Er-Ev) 0.24 eV 

LO 

*Equation (10) i l lus t ra tes  how t h e  l e v e l  (Er-EV) c a n  be  determined experimental ly  by plot t ing 1/K VS. l / p ,  or  p if 
the  carr ier  mobil i t ies  a re  known. For example,  us ing  dr i f t  mobil i t ies  from Cronemeyer ,  P h y s .  Rev .  105, 522 ( 1 9 5 7 ) ,  
and conduct ivi ty  mqbilities from P r i n c e ,  P h y s .  Rev.  93, 1204 (1954) ,  and  assuming the  recombinat ion leve l  i s  in 
t h e  lower half of the forbidden gap ,  (Er-EV) wi l l  b e  approximately 0.25 eV in  the  oxygen-containing and  approxi- 
mately 0.19 eV in the oxygen-free phosphorus-diffused c e l l s  i r radiated in t h i s  program. 
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Excluding the  curve  for a base- res i s t iv i ty  of 100 R-cm and an T], of 0.05 cm-', the  s h a p e  
of which is due  to the  ine f f ec t iveness  of t h e  chosen  recombination l e v e l  when the  Fermi- leve l  
r i s e s  above  i t ,  one  c a n  determine a n  apparent  . s lope  by fi t t ing a s t r a igh t  l i n e  to  the high-flux 
region. T h e  apparent  s l o p e s  which would be ob ta ineda re  l i s t e d  in T a b l e  V. A s l o p e  lower than 
0.5 is indeed  found for the  higher-resist ivity mater ia l  when car r ie r  removal t a k e s  p l ace .  I t  is also 

s e e n  from F ig .  21 tha t  the  cor rec t  va lue  of KO c a n  b e  computed from the va lues  of Lo and L, for 
f luxes  l e s s  than or e q u a l  to  1 x 10' el/cm' and  f o r  r e s i s t i v i t i e s  below 100-Q-cm. S ince  the same 

argument obviously ho lds  for n-type material a l s o ,  e x c e p t  tha t  the 71, is a n  order of magnitude 
grea te r ,  the  flux used  for computing KO should be t en  t imes  smal le r ;  i.e., 1 x lo'* e l / cm2  or less. 

T A B L E  V 

APPARENT S L O P E  OF L VS. q5 

I qc (cm-') I A P P A R E N T  SLOPE I KO I P i  a - c m )  I 
0 0.5 1 0.05 1 0.5 

1.5 x lo-'' 

I I I 0 I 0.5 I 

T h e  above  cr i te r ion  h a s  been  the  b a s i s  of our method of finding K from the  experimental  da t a .  
Experimental  measurements  of the b a s e  res i s t iv i ty  before and a f t e r  bombardment confirm the  
hypothes is  t ha t  c h a n g e s  in b a s e  res i s t iv i ty  d o  occur.  An estimate of 7, obtained from the sur face-  
barrier cells on 1-Q-cm, untreated n- type material is 0.1 cm- ' .  T h e  va lue  is not e x a c t  s i n c e  it 
w a s  computed from the  r e s i s t i v i ty  change  without cor rec t ing  for  c h a n g e s  in car r ie r  mobility. 

T h e  above  development  s u g g e s t s  why s l o p e  va lues  less than  0.5 occur.  T h e  ques t ion  
a r i s e s  why the  s l o p e  va lues  of the  lithium-diffused cells a r e  even  lower than those  of the phosphorus-  
diffused cells. One  implicat ion is tha t  the b a s e  r e s i s t i v i ty  of t he  l i thium-diffused cells h a s  been  
inc reased ,  but t h i s  is not be l ieved  t o  occur. Al te rna t ive ly ,  the  p re sence  of lithium e i t h e r  in- 
c r e a s e s  ?, or a n n e a l s  some  of the damage occurring during rad ia t ion .  E i the r  a l te rna t ive  would 
l e a d  to a s l o p e  sma l l e r  than 0.5. T h e  experimental  data, which a r e  incomplete  and  thus  uncer ta in ,  
i nd ica t e  a n  i n c r e a s e  in 7, in t hose  cells containing lithium and ,  hence ,  a poss ib l e  d e c r e a s e  in 
s l o p e  accord ing  to Fig .  21. A rough calculation of t h e  effect of a n  annea l ing  fac tor  which is 

31 



proportional to the  flux a l s o  p red ic t s  a d e c r e a s e  i n  slope at t h e  higher  f luxes .  T h e  co r rec t  inter-  
pretation of t h e  smal l  slope in t h e  l i thium-diffused cells obviously requi res  further experimental  

s tudy .  

D. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

Arguments can  b e  made to ex tend  e v e n  fur ther  t h e  c o n c l u s i o n s  conce rn ing  l i thium inferred 
from the  experimental  data. For example ,  in  t h i s  s t u d y ,  t h e  d e p e n d e n c e  of L, a n d  K on junc t ion  
depth ,  which w a s  found exper imenta l ly ,  may b e  d u e  to the removal  of lithium-rich ma te r i a l  ra ther  
than a true dependence on junction dep th  as s u c h .  Af te r  all, t h e  junc t ion  dep th  in  s e v e r a l  cases 

w a s  not  la rge  enough to reduce the  inc ident  e lectron-energy s igni f icant ly .  Consequen t ly ,  t h e  base 
material  shou ld  degrade in  the  s a m e  fa sh ion  as i t  d o e s  i n  the  cells with a thinner junc t ion .  Fur ther -  
more, the s p e c i f i c  ionization So is found to be  e s s e n t i a l l y  t h e  s a m e  in  the  cells with the  deep ,  
as w e l l  as  the  sha l low,  junc t ions .  T h e  s a m e  experimental  arrangement  shou ld  therefore g i v e  cor- 
rect r e s u l t s  for  both t y p e s  of cells. 

R e g a r d l e s s  of t h e s e  arguments ,  however,  i t  is conc luded  tha t  the on ly  unambiguous w a y s  
of demonstrat ing a defec t  in te rac t ion  with l i thium in th i s  type  of s t u d y  a r e  to s tudy  rad ia t ion  
damage in s o l a r  c e l l s  which h a v e  a uniform concentrat ion of l i thium in  the  base region a n d  to 

s tudy  annea l ing  of the rad ia t ion  damage  i n  cont ro l  cells a n d  cells con ta in ing  l i thium. Work on 

both of t h e s e  programs is curren t ly  under  way. 

T h e  following is a summary of t h e  experimental  s t u d y .  

1. 

2. 

3 .  

4. 

5 .  

AI, B, Ga, In, and Gd are  equivalent impurities a s  far a s  radiation resis tance 
is concerned when they are used in solar ce l l s  with a base  resistivity of 1 to 
IO-Q-cm. 

The radiation resis tance of lithium-diffused ce l l s  with a deep junction exceeds 
that of phosphorus-diffused ce l l s  with a shallow junction. 

The diffusion of lithium throughout n-type silicon reduces its resistivity, yet 
the radiation resistance of surface-barrier cells made from th i s  material i s  higher 
than expected. 

The slope of the L vs. + data agrees more closely with theory for low-resistivity 
ce l l s  of both conductivity types than for high-resistivity and, in particular, lithium- 
diffused cel ls .  

Of a l l  theimpurities studied so far, only the use  of lithium has  led to new and 
striking results. It seems reasonable that a fas t  diffuser like lithium would have 
a higher probability of interacting with radiation-induced defects than slow dif- 
fusers like B,  Ga, In, Gd, and AI. Careful experimental evaluation of the de- 
pendence of Lf and K on both the base  resistivity and junction depth must be  
made before such an interaction can reasonably be postulated. 
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111. STUDIES OF INTERACTION OF LITHIUM WITH DAMAGE CENTERS 

BY ELECTRON PARAMAGNETIC RESONANCE 

A. INTRODUCTION 

In th i s  s ec t ion  we d i s c u s s  the measurements of the  in te rac t ion  of lithium with radiation 
damage cen te r s .  While th i s  might be included under  the  gene ra l  heading  of impurity in te rac t ions ,  
i t  i s  being presented  sepa ra t e ly  because  the motivation and  exper imenta l  t echniques  were some- 
what  different,  and  because  the  impurity and the  defect s tud ied  have  very s p e c i a l  c h a r a c t e r i s t i c s  

The  work was  begun in a n  attempt to  measure  directly the  in te rac t ion  between a n  impurity 
and a de fec t .  While measurements  of a parameter s u c h  as  minority-carrier lifetime may be more 
appropriate for s tudying  material  o r  device  proper t ies ,  s u c h  measurements  a r e  e s s e n t i a l l y  ind i r ec t  
in tha t  they measure  the ef fec ts  of damage c e n t e r s  rather than their phys ica l  properties.  E lec t ron  
paramagnet ic  resonance  measurements  can measure  changes  in two of the most  important proper t ies  
of d e f e c t s .  T h e s e  a r e  charge  state and  density in the  c rys t a l .  The  charge  state is important s i n c e  
it involves  the  outer  e l ec t ron ic  s t ruc ture  and hence  the  de fec t ' s  e l e c t r i c a l  ac t iv i ty  in the c rys t a l .  
A d i rec t  measure  of the  de fec t  dens i ty  is very important b e c a u s e  its changes  with o ther  exper i -  
mental  parameters  c a n  be  char ted .  

Fo r  s t u d i e s  of impurity-defect interactions as  desc r ibed  above ,  the impurity idea l ly  shou ld  
have  the  following properties.  I t  shou ld  be e a s i l y  and  controllably introduced; it should  be  highly 
mobile (therefore inters t i t ia l ) ;  i t  shou ld  be a s imple  donor or accep to r  (i.e.,  it should  not c l u s t e r  
or be amphoteric); i t  shou ld  en te r  the c rys t a l  at su f f i c i en t ly  high concent ra t ions  at suf f ic ien t ly  
low temperature; and ,  f inally,  i t  shou ld  be de t ec t ab le  by E P R  measurements  s o  tha t  its behavior  
can  be followed as i t  i n t e rac t s  with the  de fec t .  Two impurit ies which s u g g e s t  themselves  are 

lithium and copper.  Copper  h a s  two d isadvantages ,  however. I t  does  not remain in a s imple  state 

in the  c r y s t a l 2 9  ( i t  e x i s t s  both in te rs t i t i a l ly  and  subs t i tu t iona l ly) ,  and  it d o e s  not  have  a measurable  
E P R  absorption. Lithium on the other hand, a f t e r  a n  in i t i a l  period, remains a s imple  donor with a 

low ionization energy (0.033 eV)30 which has a wel l -def ined E P R  l ine .3 '  I t  h a s ,  in  addi t ion ,  all 
the des i r ab le  f ea tu res  l i s t ed  above.  

The  de fec t  w e  have  in i t ia l ly  chosen to s tudy  is the  C-center4  in n-type s i l i c o n  ra ther  than 
the A-center4 - even  though the  A-center  is thought to be the one  tha t  d e c r e a s e s  the  minority car -  
r ier lifetime in s o l a r   cell^.^^^^ There  a r e  s e v e r a l  r easons  for t h i s ,  most  of which involve a n  E P R  
inves t iga t ion  of  the cen te r .  T h e  C-center  is  t h e  dominant  c e n t e r  at  high e lec t ron  ene rg ie s  and  
f luxes ,  supplant ing  the  A-center  in the  EPR spec t rum at  ene rg ie s  above  abou t  3 MeV.33*2 T h e  
C-center  is a primary, s t a b l e  de fec t  which d o e s  no t  annea l  apprec iab ly  at temperatures  up  to 

300"c.33 T h e  A-center, on the  other hand,  a n n e a l s  readily at  low temperatures  (- 60°C) and  re- 
qu i res  a tomic movement for  its formation.2 One  cannot  produce high concent ra t ions  (> 1016/cm3) 
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of A-centers  to t h e  exclusion of all o thers .  However ,  t h i s  might  be done  with the  C-center .  And, 
f inal ly ,  s i n c e  we expected to examine the  damage  c e n t e r s  under  low power operat ion of the  s p i n  
resonance  spectrometer  ( s e e  Sect ion I-C), choos ing  the C-center  would reduce  or  e l imina te  a n y  
sens i t iv i ty  problems we may o therwise  encounter  in  the  instrumentat ion.  

B. EXPERIMENTAL TECHNIQUES 

T h e  paramagnet ic  resonance  spec t rometer  u s e d  w a s  a Varian model V4500 he terodyne  
unit with a klystron frequency of about  9.1 G c / s e c .  T h e  magnet ic  field modulation opera ted  at 

100 k c / s e c  and had an  ampli tude at most  one  tenth the  width of the  resonance  l ine  s t u d i e s .  A l l  
measurements  were  made a t  l iquid neon temperatures ,  27"K, with the  s i l i c o n  s a m p l e s  p l a c e d  
with reproducible  geometry in  the microwave cavi ty .  Input  power l e v e l s  were w e l l  below t h o s e  
at which the  d e f e c t  resonance  l i n e s  s a t u r a t e  ( s e e  Sec t ion  I-C). 

T h e  w a f e r s  to be measured were about  1 cm long a n d  had  a c r o s s  s e c t i o n  of about  2 mm 
by 0.5 mm. They had been electron-irradiated at 6 MeV with f luxes  varying from about  2 ~ 1 0 ' ~ e l / c m ~  
to about  4 x lo1  
presented  i n  Section I of t h i s  report .  I t  w a s  found that  t h e  E P R  damage  spec t rum produced by 
s u c h  i r radiat ions was a l te red  only s l igh t ly  by h e a t  t reatments  up to 350°C. Since  t h i s  temperature 
w a s  the upper  l imit  used for the introduction of l i thium, some of the  s a m e  wafers  u s e d  for the  
introduction rate measurements were u s e d  for the  l i thium interact ion measurements .  T h u s ,  t h e  
lithium is diffused into the  wafers  a f te r  they a r e  i r radiated a n d  h a v e  ample  opportunity to "move 
around" in the damaged lattice. 

e l /cm2,  a n d  s o m e  of them had been u s e d  in t h e  introduct ion ra te  measurements  

Lithium was introduced in to  t h e  c r y s t a l  by diffusion from a mineral  oil s u s p e n s i o n  in  a 

hydrogen ambient .  The  temperature determined the  amount of l i thium introduced.  E x c e s s  l i thium 
w a s  removed from the s u r f a c e  a n d  the  wafer  w a s  then e t c h e d  l ight ly  to insure  the el iminat ion of 

s u r f a c e  states. The  concent ra t ion  of e lec t r ica l ly  a c t i v e  (donor) l i thium w a s  determined from re-  
sis tivity measurements .  

C. EXPERIMENTAL RESULTS 

When o n e  examines the E P R  spectrum of n-type s i l i c o n  which  h a s  been  bombarded by 
&MeV e l e c t r o n s  at high (> 2 x 1 O I 6  e l / c m 2 )  f luxes ,  the  dominant r e s o n a n c e s  observed  a r e  those  
of the C-center  and, to a l e s s e r  ex ten t ,  the  E-center .  Both the i r  g-values  a r e  an iso t ropic  and  lie 
between 2.0005 and 2.0135.4 T h e y  a r e  invariably s e e n  in d ispers ion  mode representat ion.  While 
there  is s o m e  evidence  indicat ing tha t  w e  s h o u l d  b e  s e e i n g  primarily the C-center ,  the width of 
the damage resonance l i n e s  cannot  rule  out  the  poss ib i l i ty  tha t  E-centers  a r e  also present33  in 
the E P R  spectrum.* If lithium is present ,  its resonance  l i n e  c a n  be presented  in e i t h e r  the  

*The E-center  is a phosphorus atom and  a vacancy.  It i s  charac te r ized  by a doublet  s t ructure  with about  a 10-gauss 
separat ion.  We d o  not s e e  th i s ,  probably b e c a u s e  other r e sonances  a re  obscuring it. 
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dispers ion  or the absorpt ion mode. However, w e  have  found tha t  reproducible  d i spe r s ion  mode 
representa t ion  is very d i f f i cu l t  d u e  chiefly to d i f f icu l t ies  in reproducing both the  phas ing  and  
the degree  of sample  i so l a t ion  in the  microwave cavi ty .  Accordingly,  we  wi l l  exhib i t  the lithium 
resonance  in the e a s i l y  reproducible  absorpt ion mode whose  s i g n a l  s t rength  h a s  been  found to 

be the  same (within abou t  20%) of the d ispers ion  mode s i g n a l  s t rength .  

T h e  lithium g-value is 1.985.31 We have  not been  a b l e  to detect the  f ine  s t ruc tu re  re- 
ported by Feher .31  Unfortunately, the  s i l i con  conduct ion  e lec t ron  l i n e  (g = 1.9987) 31 is SO 

c lose ly  s i t u a t e d  to the lithium l ine  tha t  our  spec t rometer  w a s  no t  a b l e  to r e so lve  the  two when 
measured s imul taneous ly .  T h i s  h a s  prevented our  us ing  t h e  s i l i con  conduct ion e lec t ron  l i n e  as 

a ca l ibra tor  for a par t icu lar  E P R  spectrum. 

T h e  b a s e  doping (- 1 x 10'6/cm3) of the  n- type c r y s t a l s  is phosphorus.  At low temperature  
and  at low concent ra t ions  (< 4 x 10'7/cm3) its donor r e sonance  h a s  a double t  s t ruc ture  e a s i l y  
ident i f iab le  by its hyperf ine sepa ra t ion  of abou t  40 g a u s s .  34 I t  appea r s  i n  our s p e c t r a  in  s m a l l  
concent ra t ions  (- 1014/cm3 to 10' 5/cm3) c o n s i s t e n t  with Watkins' f indings tha t  e lec t ron  irra- 
d ia t ion  sharp ly  r educes  the  phosphorus resonance s igna l .  

F igu re  22 s h o w s  three  E P R  spec t ra  taken  on (a) unirradiated s i l i con  which h a s  been  
d i f fused  with lithium at 500"c, (b) unirradiated s i l i c o n  which h a s  been  d i f fused  with l i thium at 

3oo0c, and  (c)  s i l i con  i r rad ia ted  by a flux of 2 x 10l6 e l / cm2  at 6 MeV prior to diffusing lithium 
in to  i t  at 300°C. T h e  s p e c t r a  show tha t  for t h e  300°C lithium di f fus ion  (for which the  l i thium con-  
ten t  is about  3 x 1016/cm3) the  e lec t ron  irradiation h a s  c a u s e d  the d i sappea rance  of the  ordinarily 
s t rong  lithium resonance  - l eav ing  only a damage spec t rum.  A s ign i f i can t  d i screpancy  is indica ted  
here.  T h e  C-center  introduction is only be tween 0.005 and 0.01 cm- l ,  so  tha t  t h e  C-center  
concentrat ion is about  101*/cm3.* Yet  the irradiation removes about  3 x 1016/cm3 paramagnet ic  
l i thiums. S ince  we know that A-centers  and E-centers ,  among o the r s ,  are produced at much h igher  
introduction r a t e s  (- 0.1 cm-')' w e  conclude tha t  many o ther  d e f e c t s  a r e  also p resen t  which c a n  
somehow affect paramagnet ic  lithium - we merely do not obse rve  them in the r e sonance  experiment .  

If a new paramagnet ic  c e n t e r  were  to appea r  when both l i thium and  d e f e c t s  a r e  p re sen t ,  
then th i s  would furnish unambiguous proof tha t  a new complex w a s  be ing  formed. Such,  however, 
w a s  not  the case and our  measurements  m u s t  depend on  relative changes  in the  magnitude of the 

lithium and de fec t  r e sonances .  

F igure  2 3  s h o w s  typ ica l  s p e c t r a  of f ive  i r rad ia ted  s i l i c o n  wafers .  T h e  wafers  had the  

s a m e  orientation (111) and  they all weighed be tween 22  and  24 mg. T h e  f i rs t  w a s  i r rad ia ted  with 
1 x 10' el/cm2 and w a s  then merely heat-treated for  o n e  hour at 350°C. T h e  phosphorus double t  
and  the  damage r e sonance  l i n e s  a r e  indicated.  T h e  s e c o n d  had lithium di f fused  in to  i t  at  325°C 

*This number i s  approximately verified in several instances by the magnitude of the phosphorus doublet - s e e ,  for  
example, Fig. 23. 
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Fig.  22. EPR spectra showing effects of lithium content and irradiation on lithium resonance l ine. 
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a n d  w a s  not i r radiated.  T h e  third,  fourth,  a n d  fifth w e r e  i r rad ia ted  with 2 x 

2 x 10 l7  e l / cm2 ,  respec t ive ly ,  and  then  had l i thium introduced at  325"C.* Note  the  c h a n g e  in  
ga in  s e t t i n g s  for different p a r t s  of t h e  spectrum. T h e  d e c r e a s e  of t h e  l i thium l i n e  a n d  the  growth 
of the  damage  l ines  a r e  c l ea r ly  ev iden t .  In Fig. 24 w e  s h o w  th ree  more s p e c t r a  in  which l i thium 
h a s  been  introduced at 350°C (lithium concentrat ion abou t  5 x 1016/cm3). Here ,  a l though n o  
damage l i n e s  a re  s e e n ,  the  l i thium resonance  n o n e t h e l e s s  d e c r e a s e s  as t h e  irradiation d o s e  in- 
c r e a s e s .  Note aga in  t h e  different ga in  s e t t i n g s .  T h i s  a g a i n  s t rongly  s u g g e s t s  t ha t  d e f e c t s  o the r  
than C-cen te r s ,  and in h igher  concen t r a t ions ,  a r e  formed by the i r rad ia t ions .  

5 x 10l6, a n d  

T h e  r easons  for  t he  c h a n g e s  in  themagn i tude  of t h e  phosphorus doublet  l i n e s  in  t w o  cases 

a r e  not  c l ea r ly  understood. T h e i r  e f f ec t  on t h e  s p e c t r a  c a n  b e  e l imina ted  without  l o s ing  the i r  
usefu l  function of serv ing  as markers  by u s i n g  a separate  p i e c e  of s i l i c o n  with a known concen-  
tration of a r sen ic .  Arsenic  h a s  a n  EPR quadruplet34 s t ruc tu re  wi th  a known magne t i c  field 
posit ion (hyperfine sepa ra t ion  of abou t  70 gauss ) .  In addi t ion ,  t he  a r s e n i c  l i n e s  c a n  themse lves  
furnish ca l ibra tors  for quant i ta t ive  measurements  of the  damage  and  l i thium l i n e s .  

T a b l e  VI summarizes  the  s a l i e n t  semiquant i ta t ive f ea tu res  of our EPR data i n  terms of 

the  magnitudes of the l i thium a n d  damage l i n e s .  From it o n e  c a n  draw the  pr inc ipa l  conc lus ion  
tha t  i nc reas ing  the rad ia t ion  d o s e  c a u s e s  a d e c r e a s e  in  t h e  l i thium r e s o n a n c e  r ega rd le s s  of 
whether  the  damage r e sonance  is s e e n  o r  no t ,  a n d  tha t  t h e  p r e s e n c e  of ,  a n d  i n c r e a s e s  in ,  t h e  
lithium concentration c a u s e  a d e c r e a s e  i n  t h e  damage  r e sonance .  

T A B L E  VI 
MAGNITUDES OF LITHIUM AND DEFECT RESONANCE SIGNALS 

( I N  ARBITRARY UNITS) WITH VARIOUS FLUXES AND LITHIUM CONTENTS.  
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-------- 
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Li Resonance Magnitude 
(Arbitrary Un i ts )  

18 
35 
53  
98 

1300 
GO 
18 
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0 

60 
100 
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Defect  Resonance Magnitude 
(Arbitrary Un i ts )  

7.5 
4 

0 - 1  
0 

0 
0 
7.5 

14 
1 2  

0 

0 
0 

*This  temperature  had to b e  determined empir ical ly .  Earl ier ,  3 0 0 " ~  was found t o  be too  low. No lithium l ine w a s  
observed.  A temperature of 35OoC, however ,  was too high for t h e s e  exper iments ,  b e c a u s e  no  damage l i n e s  were 
observed.  
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Fig.  24. EPR spectra showing effect of irradiation on lithium resonance l ine. 
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D. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

Two major conc lus ions  c a n  b e  drawn from th i s  work which  s t rongly  ind ica t e  future  c o u r s e s  
of s tudy .  T h e  f i r s t  is that  under  all condi t ions  in  which  damage  s p e c t r a  and/or  l i thium s p e c t r a  
c a n  be  unambiguously measured ,  there  is a lways  a n  i n c r e a s e  in  the  one  accompanied  by a de- 
c r e a s e  in the  other. T a b l e  VI s h o w s  t h i s  c l ea r ly .  Whether t he  ind ica t ed  in te rac t ion  is o n e  in  
which lithium actual ly  forms a complex  with the  defect or one  in  which  the  l i thium donor merely 
supp l i e s  a n  electron to an  (damage l eve l )  accep to r  is not  c l e a r ,  a l though the  former is s u g g e s t e d  
by lithium’s high atomic mobil i ty .  T h i s  r e su l t  s u g g e s t s  tha t  at least a par t  of the  future  work in  
th i s  f i e ld  b e  directed toward a s p e c i f i c  a n s w e r  to th i s  ques t ion .  T h i s  might be done ,  for example ,  
by incorporating lithium in to  t h e  c r y s t a l  b e f o r e  e lec t ron  i r radiat ion and  then h e a t i n g  i t  to s u c -  
c e s s i v e l y  h igher  temperatures (but  no t  too high)  whi le  measur ing  E P R  s p e c t r a  a f t e r  e a c h  h e a t  
t reatment .  S ince  th i s  would not  c h a n g e  the  e l ec t r i ca l  na ture  of the  sha l low li thium donor, c h a n g e s  
in the E P R  spec t r a  could  then  b e  a sc r ibed  to  the  a tomic  migration of the  lithium. Of c o u r s e ,  the  

natural” annealing of t h e  damage  cen te r  during t h e s e  t rea tments  would h a v e  to b e  monitored t t  

during these  experiments.  

T h e  second conc lus ion  is tha t  high-energy, high-flux e l ec t ron  i r rad ia t ions  a r e  not t he  
most appropr ia te  conditions for a s t u d y  of l i thium-defect in te rac t ions .  Diffusing l i thium in to  the  
c r y s t a l  a t ,  for  example,  300°C r e s u l t s  in  a l i thium concent ra t ion  of about  2 x 1016/cm3.  Y e t  no  
lithium resonance  i s  observed  a f t e r  a n  introduction of only  abou t  lo1* to 10’ 
very s t rong  implication is tha t  although only the C-center  may have  a n  obse rvab le  r e sonance  
under t h e s e  condi t ions ,  o ther  defects may still  have  been  formed. Indeed, the A-center and  the  
E-center  a r e  formed with production r a t e s  be tween 10 and  100 t imes  la rger  than tha t  of the  C- 
center .  T h e s e  other d e f e c t s  may still b e  p re sen t  in  the c r y s t a l  but may s imply  b e  in  the  wrong 
charge  state to have a resonance .  T h u s ,  whi le  u s i n g  high-flux, high-energy i r rad ia t ions  may in-  
s u r e  a s t rong  s igna l ,  they also in j ec t  an  e l emen t  of ambiguity in to  a t tempts  a t  de t a i l ed  a n a l y s i s  
and  interpretat ion.  T h e  ind ica ted  l i ne  of a t t ack  for  th i s  problem is to work at low ene rg ie s  
(< 1.5 MeV) and  low f luxes  (< 1 O I 6  e l / cm2) .  With t h e s e  i r rad ia t ions ,  accord ing  to de fec t  production 
cu rves  of Watkins,2 only A-centers  appea r  a n d  grow l inear ly  with flux while t h e  base-doping 
resonance ,  e .g . ,  phosphorus,  concomitantly d i sappea r s  at a s imi l a r  ra te .  T h e  c h a n g e s  in t h e s e  
r e sonances  d o  not appear  to b e  compl ica ted  by any o ther  factor .  

C-centers .  T h e  

Singling out  the A-center  for th i s  work, hopefully to the  exc lus ion  of o ther  damage  c e n t e r s ,  
may provide two more advan tages .  O n e  is tha t ,  as mentioned ear l ie r ,  i t  is be l ieved  that  the A- 
cen te r  h a s  been  identified as  the  o n e  which des t roys  t h e  l i fe t ime in n-type ~ i l i c o n . ~ ~ ’ ~  If t h i s  
is so, then impurity effects on l i fe t ime degrada t ion  (including l i thium) d i s c u s s e d  in  Sec t ion  11, 
may be  cor re la ted  with the  l i thium-defect in te rac t ion  s t u d i e d  by E P R .  T h e  s e c o n d  is tha t  working 
with only the  A-center e n h a n c e s  what  c h a n c e  we  might have  of s e e i n g  a new paramagnet ic  c e n t e r  
when l i thium a n d  de fec t s  a r e  given a c h a n c e  to form complexes .  T h i s  would be the  b e s t  ev idence  
poss ib l e  for the  ex is tence  of l i thium-defect in te rac t ions .  
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IV. SU-MARY OF LOW-ENERGY PROTON BOMBARDMENT 
OF Si AND GaAs SOLAR CELLS 

T h e  following r e s u l t s  were  obta ined  when s i l i con  and  GaAs cells were i r rad ia ted  with 
185- to 530-keV protons.  

1. T h e  short-circuit  current I s c  of the GaAs cells degraded  rapidly with flux (w 35%/decade) .  
Over  most  of the  flux range, the degradat ion in open-circuit  vo l tage  Voc  w a s  sma l l ,  so  tha t  t he  
drop in output power Pout w a s  most ly  d u e  to the  drop in I s c .  

2. In the  s i l i con  cells, Voc  fell rapidly with flux (- 20%/decade) .  T h e  va lue  of I s c  
changed  little to a ce r t a in  point,  and  then i t  fell rapidly with flux (w 50%/decade) .  Consequent ly ,  
t he  drop in Voc contr ibuted subs t an t i a l ly  to  the  drop in Po,,. 

3. At any  given flux, t he  damage in e i ther  G a A s  or s i l i con  cells inc reased  as  the proton 
energy increased .  

A se l f - cons i s t en t  model which expla ins  t h e s e  r e s u l t s  w a s  deve loped  as  follows. F o r  
e f f ic ien t  operation, GaAs cells require co l lec t ion  of photogenerated car r ie rs  from su r face  reg ions  
of the cell, whi le  s i l i con  c e l l s  depend upon co l lec t ion  from the  b a s e  region. T h e  shor t  range of 
185- to 530-keV protons r e su l t s  in damaged regions up to 6.8 p d e e p  in s i l i con  and  3.5 p i n  GaAs,  
i.e., primarily the  su r face  region of t he  cells. Hence ,  t h e  cell proper t ies  which wi l l  be  m o s t  

affected by radiation a r e  car r ie r  co l lec t ion  in the  GaAs and  junction rec t i f ica t ion  in the  s i l i c o n  
cells. T h e  e f f ec t iveness  of the  higher-energy protons in producing cell degradat ion a r i s e s  from 
the i r  ab i l i t y  to penet ra te  t he  mater ia l  further, damaging more of the volume from which car r ie r  
co l lec t ion  occurs .  An adequa te  formulation of the  s p e c t r a l  r e sponse  w a s  developed.  T h i s  mathe- 
matical descr ip t ion  exh ib i t s  qua l i ta t ive ly  those fea tures  found experimental ly .  

A more de ta i led  t reatment  of th i s  material c a n  b e  found in the  F i r s t  Semiannual  Report  
prepared under  th i s  Cont rac t  in May, 1964. 
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